IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v264y2020ics0306261920302178.html
   My bibliography  Save this article

A novel high-temperature (>700 °C), volumetric receiver with a packed bed of transparent and absorbing spheres

Author

Listed:
  • Sedighi, Mohammadreza
  • Padilla, Ricardo Vasquez
  • Alamdari, Pedram
  • Lake, Maree
  • Rose, Andrew
  • Izadgoshasb, Iman
  • Taylor, Robert A.

Abstract

The concentrated solar power industry requires high-temperature receivers to push towards advanced power cycles. However, as the outlet temperature of a receiver increases, radiation losses (which are ∝T4) become dominant. In addition, at high temperatures, not many liquid working fluids are suitable. To address these issues, this research proposes an innovative, robust design of a gas-phase cavity receiver which utilises semi-transparent spheres as a volumetric absorption medium. The motivation behind this design is to break the long-standing outlet temperature versus efficiency trade-off by maximising the “volumetric effect” (i.e. obtaining a higher outlet fluid temperature than the receiver’s surface temperature). A range of designs were compared (i.e. packed beds of semi-transparent and high-transparency quartz spheres against an opaque bed of ceramic spheres). This study is important because it determines how the volumetric effect modifies the overall receiver efficiency via a holistic metric (proposed herein) which accounts for the optical, thermal, and pumping power efficiencies. Through a detailed ray-tracing analysis and a comprehensive thermal circuit model, this study reveals that a semi-transparent quartz packed bed receiver can have an overall receiver efficiency of around 80% at outlet temperatures above 700 °C. Most significantly, the best proposed design achieved a high value for the elusive volumetric effect (e.g. a maximum index value of 1.45). Based upon these results, the authors can conclude that these packed bed designs represent a promising new pathway towards reliable and cost-effective high-temperature and high-efficiency receivers which can be implemented into advanced, high-temperature power cycles.

Suggested Citation

  • Sedighi, Mohammadreza & Padilla, Ricardo Vasquez & Alamdari, Pedram & Lake, Maree & Rose, Andrew & Izadgoshasb, Iman & Taylor, Robert A., 2020. "A novel high-temperature (>700 °C), volumetric receiver with a packed bed of transparent and absorbing spheres," Applied Energy, Elsevier, vol. 264(C).
  • Handle: RePEc:eee:appene:v:264:y:2020:i:c:s0306261920302178
    DOI: 10.1016/j.apenergy.2020.114705
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920302178
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.114705?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bai, Zhang & Liu, Qibin & Lei, Jing & Jin, Hongguang, 2018. "Investigation on the mid-temperature solar thermochemical power generation system with methanol decomposition," Applied Energy, Elsevier, vol. 217(C), pages 56-65.
    2. Peinado Gonzalo, Alfredo & Pliego Marugán, Alberto & García Márquez, Fausto Pedro, 2019. "A review of the application performances of concentrated solar power systems," Applied Energy, Elsevier, vol. 255(C).
    3. Avila-Marin, A.L. & Fernandez-Reche, J. & Martinez-Tarifa, A., 2019. "Modelling strategies for porous structures as solar receivers in central receiver systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 15-33.
    4. Xu, Haoran & Chen, Bin & Tan, Peng & Sun, Qiong & Maroto-Valer, M. Mercedes & Ni, Meng, 2019. "Modelling of a hybrid system for on-site power generation from solar fuels," Applied Energy, Elsevier, vol. 240(C), pages 709-718.
    5. Sunku Prasad, J. & Muthukumar, P. & Desai, Fenil & Basu, Dipankar N. & Rahman, Muhammad M., 2019. "A critical review of high-temperature reversible thermochemical energy storage systems," Applied Energy, Elsevier, vol. 254(C).
    6. Gu, Tianbao & Yin, Chungen & Ma, Wenchao & Chen, Guanyi, 2019. "Municipal solid waste incineration in a packed bed: A comprehensive modeling study with experimental validation," Applied Energy, Elsevier, vol. 247(C), pages 127-139.
    7. Yang, Bei & Bai, Fengwu & Wang, Yan & Wang, Zhifeng, 2019. "Study on standby process of an air-based solid packed bed for flexible high-temperature heat storage: Experimental results and modelling," Applied Energy, Elsevier, vol. 238(C), pages 135-146.
    8. Ma, Yuegeng & Morozyuk, Tatiana & Liu, Ming & Yan, Junjie & Liu, Jiping, 2019. "Optimal integration of recompression supercritical CO2 Brayton cycle with main compression intercooling in solar power tower system based on exergoeconomic approach," Applied Energy, Elsevier, vol. 242(C), pages 1134-1154.
    9. Wang, P. & Li, J.B. & Bai, F.W. & Liu, D.Y. & Xu, C. & Zhao, L. & Wang, Z.F., 2017. "Experimental and theoretical evaluation on the thermal performance of a windowed volumetric solar receiver," Energy, Elsevier, vol. 119(C), pages 652-661.
    10. Mostafavi Tehrani, S. Saeed & Shoraka, Yashar & Nithyanandam, Karthik & Taylor, Robert A., 2019. "Shell-and-tube or packed bed thermal energy storage systems integrated with a concentrated solar power: A techno-economic comparison of sensible and latent heat systems," Applied Energy, Elsevier, vol. 238(C), pages 887-910.
    11. Du, Shen & Ren, Qinlong & He, Ya-Ling, 2017. "Optical and radiative properties analysis and optimization study of the gradually-varied volumetric solar receiver," Applied Energy, Elsevier, vol. 207(C), pages 27-35.
    12. Capuano, Raffaele & Fend, Thomas & Stadler, Hannes & Hoffschmidt, Bernhard & Pitz-Paal, Robert, 2017. "Optimized volumetric solar receiver: Thermal performance prediction and experimental validation," Renewable Energy, Elsevier, vol. 114(PB), pages 556-566.
    13. Wang, Jingyu & Yang, Jian & Cheng, Zhilong & Liu, Yan & Chen, Yitung & Wang, Qiuwang, 2018. "Experimental and numerical study on pressure drop and heat transfer performance of grille-sphere composite structured packed bed," Applied Energy, Elsevier, vol. 227(C), pages 719-730.
    14. Li, Long & Yan, Xiaohong & Yang, Jian & Wang, Qiuwang, 2017. "Numerical investigation on band-broadening characteristics of an ordered packed bed with novel particles," Applied Energy, Elsevier, vol. 185(P2), pages 2168-2180.
    15. Sarkar, Jahar & Ghosh, Pradyumna & Adil, Arjumand, 2015. "A review on hybrid nanofluids: Recent research, development and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 164-177.
    16. Padilla, Ricardo Vasquez & Soo Too, Yen Chean & Benito, Regano & Stein, Wes, 2015. "Exergetic analysis of supercritical CO2 Brayton cycles integrated with solar central receivers," Applied Energy, Elsevier, vol. 148(C), pages 348-365.
    17. Zaversky, Fritz & Aldaz, Leticia & Sánchez, Marcelino & Ávila-Marín, Antonio L. & Roldán, M. Isabel & Fernández-Reche, Jesús & Füssel, Alexander & Beckert, Wieland & Adler, Jörg, 2018. "Numerical and experimental evaluation and optimization of ceramic foam as solar absorber – Single-layer vs multi-layer configurations," Applied Energy, Elsevier, vol. 210(C), pages 351-375.
    18. Pabst, Christoph & Feckler, Gereon & Schmitz, Stefan & Smirnova, Olena & Capuano, Raffaele & Hirth, Peter & Fend, Thomas, 2017. "Experimental performance of an advanced metal volumetric air receiver for Solar Towers," Renewable Energy, Elsevier, vol. 106(C), pages 91-98.
    19. Calderón, Alejandro & Palacios, Anabel & Barreneche, Camila & Segarra, Mercè & Prieto, Cristina & Rodriguez-Sanchez, Alfonso & Fernández, A. Inés, 2018. "High temperature systems using solid particles as TES and HTF material: A review," Applied Energy, Elsevier, vol. 213(C), pages 100-111.
    20. Barreto, Germilly & Canhoto, Paulo & Collares-Pereira, Manuel, 2019. "Three-dimensional CFD modelling and thermal performance analysis of porous volumetric receivers coupled to solar concentration systems," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    21. Ambra Giovannelli & Muhammad Anser Bashir, 2017. "Charge and Discharge Analyses of a PCM Storage System Integrated in a High-Temperature Solar Receiver," Energies, MDPI, vol. 10(12), pages 1-13, November.
    22. Barreto, Germilly & Canhoto, Paulo & Collares-Pereira, Manuel, 2018. "Three-dimensional modelling and analysis of solar radiation absorption in porous volumetric receivers," Applied Energy, Elsevier, vol. 215(C), pages 602-614.
    23. Brodrick, Philip G. & Brandt, Adam R. & Durlofsky, Louis J., 2018. "Optimal design and operation of integrated solar combined cycles under emissions intensity constraints," Applied Energy, Elsevier, vol. 226(C), pages 979-990.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng, Hangbin & Liu, Xianglei & Xuan, Yimin & Song, Chao & Liu, Dachuan & Zhu, Qibin & Zhu, Zhonghui & Gao, Ke & Li, Yongliang & Ding, Yulong, 2021. "Thermochemical heat storage performances of fluidized black CaCO3 pellets under direct concentrated solar irradiation," Renewable Energy, Elsevier, vol. 178(C), pages 1353-1369.
    2. Avila-Marin, Antonio L. & Fernandez-Reche, Jesus & Carballo, Jose Antonio & Carra, Maria Elena & Gianella, Sandro & Ferrari, Luca & Sanchez-Señoran, Daniel, 2022. "CFD analysis of the performance impact of geometrical shape on volumetric absorbers in a standard cup," Renewable Energy, Elsevier, vol. 201(P1), pages 256-272.
    3. Avila-Marin, Antonio L., 2022. "CFD parametric analysis of wire meshes open volumetric receivers with axial-varied porosity and comparison with small-scale solar receiver tests," Renewable Energy, Elsevier, vol. 193(C), pages 1094-1105.
    4. Pratticò, Luca & Fronza, Nicola & Bartali, Ruben & Chiappini, Andrea & Sciubba, Enrico & González-Aguilar, J. & Crema, Luigi, 2021. "Radiation propagation in a hierarchical solar volumetric absorber: Results of single-photon avalanche diode measurements and Monte Carlo ray tracing analysis," Renewable Energy, Elsevier, vol. 180(C), pages 482-493.
    5. Chen, Xue & Lyu, Jinxin & Sun, Chuang & Xia, Xinlin & Wang, Fuqiang, 2023. "Pore-scale evaluation on a volumetric solar receiver with different optical property control strategies," Energy, Elsevier, vol. 278(PB).
    6. Vishwa Deepak Kumar & Vikas K. Upadhyay & Gurveer Singh & Sudipto Mukhopadhyay & Laltu Chandra, 2022. "Open volumetric air receiver: An innovative application and a major challenge," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(1), January.
    7. Siavashi, Majid & Hosseini, Farzad & Talesh Bahrami, Hamid Reza, 2021. "A new design with preheating and layered porous ceramic for hydrogen production through methane steam reforming process," Energy, Elsevier, vol. 231(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Navalho, Jorge E.P. & Pereira, José C.F., 2020. "A comprehensive and fully predictive discrete methodology for volumetric solar receivers: application to a functional parabolic dish solar collector system," Applied Energy, Elsevier, vol. 267(C).
    2. Barreto, Germilly & Canhoto, Paulo & Collares-Pereira, Manuel, 2020. "Parametric analysis and optimisation of porous volumetric solar receivers made of open-cell SiC ceramic foam," Energy, Elsevier, vol. 200(C).
    3. Guilong Dai & Jiangfei Huangfu & Xiaoyu Wang & Shenghua Du & Tian Zhao, 2023. "A Review of Radiative Heat Transfer in Fixed-Bed Particle Solar Receivers," Sustainability, MDPI, vol. 15(13), pages 1-37, June.
    4. Avila-Marin, Antonio L., 2022. "CFD parametric analysis of wire meshes open volumetric receivers with axial-varied porosity and comparison with small-scale solar receiver tests," Renewable Energy, Elsevier, vol. 193(C), pages 1094-1105.
    5. Avila-Marin, A.L. & Fernandez-Reche, J. & Martinez-Tarifa, A., 2019. "Modelling strategies for porous structures as solar receivers in central receiver systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 15-33.
    6. Godini, Ali & Kheradmand, Saeid, 2021. "Optimization of volumetric solar receiver geometry and porous media specifications," Renewable Energy, Elsevier, vol. 172(C), pages 574-581.
    7. Li, J.B. & Wang, P. & Liu, D.Y., 2022. "Optimization on the gradually varied pore structure distribution for the irradiated absorber," Energy, Elsevier, vol. 240(C).
    8. Barreto, Germilly & Canhoto, Paulo & Collares-Pereira, Manuel, 2019. "Three-dimensional CFD modelling and thermal performance analysis of porous volumetric receivers coupled to solar concentration systems," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    9. Avila-Marin, Antonio L. & Fernandez-Reche, Jesus & Carballo, Jose Antonio & Carra, Maria Elena & Gianella, Sandro & Ferrari, Luca & Sanchez-Señoran, Daniel, 2022. "CFD analysis of the performance impact of geometrical shape on volumetric absorbers in a standard cup," Renewable Energy, Elsevier, vol. 201(P1), pages 256-272.
    10. Wang, P. & Li, J.B. & Xu, R.N. & Jiang, P.X., 2021. "Non-uniform and volumetric effect on the hydrodynamic and thermal characteristic in a unit solar absorber," Energy, Elsevier, vol. 225(C).
    11. Avila-Marin, Antonio L. & Fernandez-Reche, Jesus & Gianella, Sandro & Ferrari, Luca & Sanchez-Señoran, Daniel, 2022. "Experimental study of innovative periodic cellular structures as air volumetric absorbers," Renewable Energy, Elsevier, vol. 184(C), pages 391-404.
    12. Pratticò, Luca & Fronza, Nicola & Bartali, Ruben & Chiappini, Andrea & Sciubba, Enrico & González-Aguilar, J. & Crema, Luigi, 2021. "Radiation propagation in a hierarchical solar volumetric absorber: Results of single-photon avalanche diode measurements and Monte Carlo ray tracing analysis," Renewable Energy, Elsevier, vol. 180(C), pages 482-493.
    13. Sedighi, Mohammadreza & Padilla, Ricardo Vasquez & Rose, Andrew & Taylor, Robert A., 2022. "Optical analysis of a semi-transparent packed bed of spheres for next-generation volumetric solar receivers," Energy, Elsevier, vol. 252(C).
    14. Avila-Marin, Antonio L. & Caliot, Cyril & Alvarez de Lara, Monica & Fernandez-Reche, Jesus & Montes, Maria Jose & Martinez-Tarifa, Adela, 2019. "Homogeneous equivalent model coupled with P1-approximation for dense wire meshes volumetric air receivers," Renewable Energy, Elsevier, vol. 135(C), pages 908-919.
    15. He, Ya-Ling & Qiu, Yu & Wang, Kun & Yuan, Fan & Wang, Wen-Qi & Li, Ming-Jia & Guo, Jia-Qi, 2020. "Perspective of concentrating solar power," Energy, Elsevier, vol. 198(C).
    16. Yang, Jingze & Yang, Zhen & Duan, Yuanyuan, 2022. "A review on integrated design and off-design operation of solar power tower system with S–CO2 Brayton cycle," Energy, Elsevier, vol. 246(C).
    17. Du, Shen & Li, Ming-Jia & He, Ya-Ling & Shen, Sheng, 2021. "Conceptual design of porous volumetric solar receiver using molten salt as heat transfer fluid," Applied Energy, Elsevier, vol. 301(C).
    18. Avila-Marin, Antonio L. & Alvarez de Lara, Monica & Fernandez-Reche, Jesus, 2018. "Experimental results of gradual porosity volumetric air receivers with wire meshes," Renewable Energy, Elsevier, vol. 122(C), pages 339-353.
    19. Carlos E. Arreola-Ramos & Omar Álvarez-Brito & Juan Daniel Macías & Aldo Javier Guadarrama-Mendoza & Manuel A. Ramírez-Cabrera & Armando Rojas-Morin & Patricio J. Valadés-Pelayo & Heidi Isabel Villafá, 2021. "Experimental Evaluation and Modeling of Air Heating in a Ceramic Foam Volumetric Absorber by Effective Parameters," Energies, MDPI, vol. 14(9), pages 1-15, April.
    20. Nakakura, Mitsuho & Matsubara, Koji & Bellan, Selvan & Kodama, Tatsuya, 2020. "Direct simulation of a volumetric solar receiver with different cell sizes at high outlet temperatures (1,000–1,500 °C)," Renewable Energy, Elsevier, vol. 146(C), pages 1143-1152.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:264:y:2020:i:c:s0306261920302178. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.