IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i10p2403-d1396109.html
   My bibliography  Save this article

New Advances in Materials, Applications, and Design Optimization of Thermocline Heat Storage: Comprehensive Review

Author

Listed:
  • Yunshen Zhang

    (School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai 201620, China)

  • Yun Guo

    (School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai 201620, China)

  • Jiaao Zhu

    (School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai 201620, China)

  • Weijian Yuan

    (School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai 201620, China)

  • Feng Zhao

    (School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai 201620, China)

Abstract

To achieve sustainable development goals and meet the demand for clean and efficient energy utilization, it is imperative to advance the penetration of renewable energy in various sectors. Energy storage systems can mitigate the intermittent issues of renewable energy and enhance the efficiency and economic viability of existing energy facilities. Among various energy storage technologies, thermocline heat storage (THS) has garnered widespread attention from researchers due to its stability and economic advantages. Currently, there are only a few review articles focusing on THS, and there is a gap in the literature regarding the optimization design of THS systems. Therefore, this paper provides a comprehensive review of the recent research progress in THS, elucidating its principles, thermal storage materials, applications, and optimization designs. The novelty of this work lies in the detailed classification and analysis of various optimization designs for THS, including tank shape, aspect ratio, inlet/outlet configuration, thermal energy storage materials arrangement, operating strategies, and numerical model optimization approaches. The limitations of existing research are also identified, and future perspectives are proposed, aiming to provide recommendations for THS research and contribute to the development and promotion of THS technology.

Suggested Citation

  • Yunshen Zhang & Yun Guo & Jiaao Zhu & Weijian Yuan & Feng Zhao, 2024. "New Advances in Materials, Applications, and Design Optimization of Thermocline Heat Storage: Comprehensive Review," Energies, MDPI, vol. 17(10), pages 1-41, May.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:10:p:2403-:d:1396109
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/10/2403/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/10/2403/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dickinson, Ryan M. & Cruickshank, Cynthia A. & Harrison, Stephen J., 2013. "Charge and discharge strategies for a multi-tank thermal energy storage," Applied Energy, Elsevier, vol. 109(C), pages 366-373.
    2. McTigue, J.D. & White, A.J., 2018. "A comparison of radial-flow and axial-flow packed beds for thermal energy storage," Applied Energy, Elsevier, vol. 227(C), pages 533-541.
    3. Li, Gang & Zheng, Xuefei, 2016. "Thermal energy storage system integration forms for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 736-757.
    4. Schwarzmayr, Paul & Birkelbach, Felix & Walter, Heimo & Hofmann, René, 2023. "Standby efficiency and thermocline degradation of a packed bed thermal energy storage: An experimental study," Applied Energy, Elsevier, vol. 337(C).
    5. Mawire, Ashmore & Taole, Simeon H., 2011. "A comparison of experimental thermal stratification parameters for an oil/pebble-bed thermal energy storage (TES) system during charging," Applied Energy, Elsevier, vol. 88(12), pages 4766-4778.
    6. ELSihy, ELSaeed Saad & Mokhtar, Omar & Xu, Chao & Du, Xiaoze & Adel, Mohamed, 2023. "Cyclic performance characterization of a high-temperature thermal energy storage system packed with rock/slag pebbles granules combined with encapsulated phase change materials," Applied Energy, Elsevier, vol. 331(C).
    7. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    8. Wang, Letian & Yang, Zhen & Duan, Yuanyuan, 2015. "Influence of flow distribution on the thermal performance of dual-media thermocline energy storage systems," Applied Energy, Elsevier, vol. 142(C), pages 283-292.
    9. Sedighi, Mohammadreza & Padilla, Ricardo Vasquez & Alamdari, Pedram & Lake, Maree & Rose, Andrew & Izadgoshasb, Iman & Taylor, Robert A., 2020. "A novel high-temperature (>700 °C), volumetric receiver with a packed bed of transparent and absorbing spheres," Applied Energy, Elsevier, vol. 264(C).
    10. Castell, A. & Medrano, M. & Solé, C. & Cabeza, L.F., 2010. "Dimensionless numbers used to characterize stratification in water tanks for discharging at low flow rates," Renewable Energy, Elsevier, vol. 35(10), pages 2192-2199.
    11. Spur, Roman & Fiala, Dusan & Nevrala, Dusan & Probert, Doug, 2006. "Performances of modern domestic hot-water stores," Applied Energy, Elsevier, vol. 83(8), pages 893-910, August.
    12. Wang, Fangxian & Zhang, Chao & Liu, Jian & Fang, Xiaoming & Zhang, Zhengguo, 2017. "Highly stable graphite nanoparticle-dispersed phase change emulsions with little supercooling and high thermal conductivity for cold energy storage," Applied Energy, Elsevier, vol. 188(C), pages 97-106.
    13. Peng, Hao & Shan, Xuekun & Yang, Yu & Ling, Xiang, 2018. "A study on performance of a liquid air energy storage system with packed bed units," Applied Energy, Elsevier, vol. 211(C), pages 126-135.
    14. Wu, Ming & Li, Mingjia & Xu, Chao & He, Yaling & Tao, Wenquan, 2014. "The impact of concrete structure on the thermal performance of the dual-media thermocline thermal storage tank using concrete as the solid medium," Applied Energy, Elsevier, vol. 113(C), pages 1363-1371.
    15. Elfeky, K.E. & Li, Xinyi & Ahmed, N. & Lu, Lin & Wang, Qiuwang, 2019. "Optimization of thermal performance in thermocline tank thermal energy storage system with the multilayered PCM(s) for CSP tower plants," Applied Energy, Elsevier, vol. 243(C), pages 175-190.
    16. Arkadiusz Szczęśniak & Jarosław Milewski & Olaf Dybiński & Kamil Futyma & Jakub Skibiński & Aliaksandr Martsinchyk & Łukasz Szabłowski, 2023. "Determination of Thermocline Heat Transfer Coefficient by Using CFD Simulation," Energies, MDPI, vol. 16(7), pages 1-14, March.
    17. Daschner, Robert & Binder, Samir & Mocker, Mario, 2013. "Pebble bed regenerator and storage system for high temperature use," Applied Energy, Elsevier, vol. 109(C), pages 394-401.
    18. Lou, Wanruo & Xie, Baoshan & Aubril, Julien & Fan, Yilin & Luo, Lingai & Arrivé, Arnaud, 2023. "Optimized flow distributor for stabilized thermal stratification in a single-medium thermocline storage tank: A numerical and experimental study," Energy, Elsevier, vol. 263(PA).
    19. Szczęśniak, Arkadiusz & Milewski, Jarosław & Dybiński, Olaf & Futyma, Kamil & Skibiński, Jakub & Martsinchyk, Aliaksandr, 2023. "Dynamic simulation of a four tank 200 m3 seasonal thermal energy storage system oriented to air conditioning at a dietary supplements factory," Energy, Elsevier, vol. 264(C).
    20. Cheng, Xiwen & Zhai, Xiaoqiang, 2018. "Thermal performance analysis and optimization of a cascaded packed bed cool thermal energy storage unit using multiple phase change materials," Applied Energy, Elsevier, vol. 215(C), pages 566-576.
    21. Untrau, Alix & Sochard, Sabine & Marias, Frédéric & Reneaume, Jean-Michel & Le Roux, Galo A.C. & Serra, Sylvain, 2023. "A fast and accurate 1-dimensional model for dynamic simulation and optimization of a stratified thermal energy storage," Applied Energy, Elsevier, vol. 333(C).
    22. Elfeky, Karem Elsayed & Mohammed, Abubakar Gambo & Ahmed, Naveed & Wang, Qiuwang, 2023. "Thermo-mechanical investigation of the multi-layer thermocline tank for parabolic trough power plants," Energy, Elsevier, vol. 268(C).
    23. Xie, Baoshan & Baudin, Nicolas & Soto, Jérôme & Fan, Yilin & Luo, Lingai, 2023. "Experimental and numerical study on the thermocline behavior of packed-bed storage tank with sensible fillers," Renewable Energy, Elsevier, vol. 209(C), pages 106-121.
    24. Petrollese, Mario & Cascetta, Mario & Tola, Vittorio & Cocco, Daniele & Cau, Giorgio, 2022. "Pumped thermal energy storage systems integrated with a concentrating solar power section: Conceptual design and performance evaluation," Energy, Elsevier, vol. 247(C).
    25. Xinming Xi & Zicheng Zhang & Huimin Wei & Zeyu Chen & Xiaoze Du, 2023. "Experimental Study of Simultaneous Charging and Discharging Process in Thermocline Phase Change Heat Storage System Based on Solar Energy," Sustainability, MDPI, vol. 15(9), pages 1-17, April.
    26. Marti, Jan & Geissbühler, Lukas & Becattini, Viola & Haselbacher, Andreas & Steinfeld, Aldo, 2018. "Constrained multi-objective optimization of thermocline packed-bed thermal-energy storage," Applied Energy, Elsevier, vol. 216(C), pages 694-708.
    27. González, Ignacio & Pérez-Segarra, Carlos David & Lehmkuhl, Oriol & Torras, Santiago & Oliva, Assensi, 2016. "Thermo-mechanical parametric analysis of packed-bed thermocline energy storage tanks," Applied Energy, Elsevier, vol. 179(C), pages 1106-1122.
    28. Ingenhoven, Philip & Lee, Leok & Saw, Woei & Rafique, Muhammad Mujahid & Potter, Daniel & Nathan, Graham J., 2023. "Techno-economic assessment from a transient simulation of a concentrated solar thermal plant to deliver high-temperature industrial process heat," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    29. Flueckiger, Scott & Yang, Zhen & Garimella, Suresh V., 2011. "An integrated thermal and mechanical investigation of molten-salt thermocline energy storage," Applied Energy, Elsevier, vol. 88(6), pages 2098-2105, June.
    30. Flueckiger, Scott M. & Garimella, Suresh V., 2014. "Latent heat augmentation of thermocline energy storage for concentrating solar power – A system-level assessment," Applied Energy, Elsevier, vol. 116(C), pages 278-287.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elfeky, Karem Elsayed & Mohammed, Abubakar Gambo & Ahmed, Naveed & Wang, Qiuwang, 2023. "Thermo-mechanical investigation of the multi-layer thermocline tank for parabolic trough power plants," Energy, Elsevier, vol. 268(C).
    2. Trevisan, Silvia & Wang, Wujun & Guedez, Rafael & Laumert, Björn, 2022. "Experimental evaluation of an innovative radial-flow high-temperature packed bed thermal energy storage," Applied Energy, Elsevier, vol. 311(C).
    3. Al-Azawii, Mohammad M.S. & Theade, Carter & Bueno, Pablo & Anderson, Ryan, 2019. "Experimental study of layered thermal energy storage in an air-alumina packed bed using axial pipe injections," Applied Energy, Elsevier, vol. 249(C), pages 409-422.
    4. Singh, Shobhana & Sørensen, Kim & Condra, Thomas & Batz, Søren Søndergaard & Kristensen, Kristian, 2019. "Investigation on transient performance of a large-scale packed-bed thermal energy storage," Applied Energy, Elsevier, vol. 239(C), pages 1114-1129.
    5. Calderón-Vásquez, Ignacio & Cortés, Eduardo & García, Jesús & Segovia, Valentina & Caroca, Alejandro & Sarmiento, Cristóbal & Barraza, Rodrigo & Cardemil, José M., 2021. "Review on modeling approaches for packed-bed thermal storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    6. Zhao, Bing-chen & Cheng, Mao-song & Liu, Chang & Dai, Zhi-min, 2016. "Thermal performance and cost analysis of a multi-layered solid-PCM thermocline thermal energy storage for CSP tower plants," Applied Energy, Elsevier, vol. 178(C), pages 784-799.
    7. Elfeky, K.E. & Mohammed, A.G. & Ahmed, N. & Lu, Lin & Wang, Qiuwang, 2020. "Thermal and economic evaluation of phase change material volume fraction for thermocline tank used in concentrating solar power plants," Applied Energy, Elsevier, vol. 267(C).
    8. Elfeky, Karem Elsayed & Mohammed, Abubakar Gambo & Wang, Qiuwang, 2021. "Cycle cut-off criterion effect on the performance of cascaded, sensible, combined sensible-latent heat storage tank for concentrating solar power plants," Energy, Elsevier, vol. 230(C).
    9. Zhao, Bing-chen & Cheng, Mao-song & Liu, Chang & Dai, Zhi-min, 2017. "Cyclic thermal characterization of a molten-salt packed-bed thermal energy storage for concentrating solar power," Applied Energy, Elsevier, vol. 195(C), pages 761-773.
    10. María Gasque & Federico Ibáñez & Pablo González-Altozano, 2021. "Minimum Number of Experimental Data for the Thermal Characterization of a Hot Water Storage Tank," Energies, MDPI, vol. 14(16), pages 1-16, August.
    11. Xu, Yang & Ren, Qinlong & Zheng, Zhang-Jing & He, Ya-Ling, 2017. "Evaluation and optimization of melting performance for a latent heat thermal energy storage unit partially filled with porous media," Applied Energy, Elsevier, vol. 193(C), pages 84-95.
    12. Saloux, E. & Candanedo, J.A., 2019. "Modelling stratified thermal energy storage tanks using an advanced flowrate distribution of the received flow," Applied Energy, Elsevier, vol. 241(C), pages 34-45.
    13. Li, Jiaqi & Tu, Rang & Liu, Mengdan & Wang, Siqi, 2021. "Exergy analysis of a novel multi-stage latent heat storage device based on uniformity of temperature differences fields," Energy, Elsevier, vol. 221(C).
    14. Lihua Cao & Jingwen Yu & Xifeng Liu & Zhanzhou Wang, 2024. "Evaluation Method and Analysis on Performance of Diffuser in Heat Storage Tank," Energies, MDPI, vol. 17(3), pages 1-15, January.
    15. Tehrani, S. Saeed Mostafavi & Taylor, Robert A. & Saberi, Pouya & Diarce, Gonzalo, 2016. "Design and feasibility of high temperature shell and tube latent heat thermal energy storage system for solar thermal power plants," Renewable Energy, Elsevier, vol. 96(PA), pages 120-136.
    16. Fasquelle, T. & Falcoz, Q. & Neveu, P. & Hoffmann, J.-F., 2018. "A temperature threshold evaluation for thermocline energy storage in concentrated solar power plants," Applied Energy, Elsevier, vol. 212(C), pages 1153-1164.
    17. Wanruo Lou & Lingai Luo & Yuchao Hua & Yilin Fan & Zhenyu Du, 2021. "A Review on the Performance Indicators and Influencing Factors for the Thermocline Thermal Energy Storage Systems," Energies, MDPI, vol. 14(24), pages 1-19, December.
    18. Ortega-Fernández, Iñigo & Rodríguez-Aseguinolaza, Javier, 2019. "Thermal energy storage for waste heat recovery in the steelworks: The case study of the REslag project," Applied Energy, Elsevier, vol. 237(C), pages 708-719.
    19. Alberto Benato & Francesco De Vanna & Anna Stoppato, 2022. "Levelling the Photovoltaic Power Profile with the Integrated Energy Storage System," Energies, MDPI, vol. 15(24), pages 1-21, December.
    20. Elfeky, K.E. & Li, Xinyi & Ahmed, N. & Lu, Lin & Wang, Qiuwang, 2019. "Optimization of thermal performance in thermocline tank thermal energy storage system with the multilayered PCM(s) for CSP tower plants," Applied Energy, Elsevier, vol. 243(C), pages 175-190.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:10:p:2403-:d:1396109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.