IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v337y2023ics0306261923002817.html
   My bibliography  Save this article

Standby efficiency and thermocline degradation of a packed bed thermal energy storage: An experimental study

Author

Listed:
  • Schwarzmayr, Paul
  • Birkelbach, Felix
  • Walter, Heimo
  • Hofmann, René

Abstract

The waste heat potential from industrial processes is tremendous and if it can be utilized it may significantly contribute to the mitigation of climate change. A packed bed thermal energy storage system is a low-cost storage technology that can be employed to enable the utilization of waste heat from industrial processes. This system can be used to store excess heat and release this energy when it is needed at a later time. To ensure the efficient operation of a packed bed thermal energy storage, its characteristics in standby mode need to be studied in great detail. In the present study, the standby efficiency and thermocline degradation of a lab-scale packed bed thermal energy storage in standby mode is experimentally investigated for different flow directions of the heat transfer fluid during the preceding charging period. Results show that for long standby periods, the standby efficiency is significantly affected by the flow direction of the heat transfer fluid. The maximum entropy generation rate for a 22h standby process with the flow direction of the heat transfer fluid from the bottom to the top in the preceding charging process is twice as high as for the same process with reversed flow direction. Energy efficiency is 5% higher whilst exergy efficiency is even 18% higher in the process with reversed flow direction.

Suggested Citation

  • Schwarzmayr, Paul & Birkelbach, Felix & Walter, Heimo & Hofmann, René, 2023. "Standby efficiency and thermocline degradation of a packed bed thermal energy storage: An experimental study," Applied Energy, Elsevier, vol. 337(C).
  • Handle: RePEc:eee:appene:v:337:y:2023:i:c:s0306261923002817
    DOI: 10.1016/j.apenergy.2023.120917
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923002817
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.120917?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Forman, Clemens & Muritala, Ibrahim Kolawole & Pardemann, Robert & Meyer, Bernd, 2016. "Estimating the global waste heat potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1568-1579.
    2. Xu, Chao & Wang, Zhifeng & He, Yaling & Li, Xin & Bai, Fengwu, 2012. "Parametric study and standby behavior of a packed-bed molten salt thermocline thermal storage system," Renewable Energy, Elsevier, vol. 48(C), pages 1-9.
    3. Bruch, A. & Molina, S. & Esence, T. & Fourmigué, J.F. & Couturier, R., 2017. "Experimental investigation of cycling behaviour of pilot-scale thermal oil packed-bed thermal storage system," Renewable Energy, Elsevier, vol. 103(C), pages 277-285.
    4. Xie, Baoshan & Baudin, Nicolas & Soto, Jérôme & Fan, Yilin & Luo, Lingai, 2022. "Wall impact on efficiency of packed-bed thermocline thermal energy storage system," Energy, Elsevier, vol. 247(C).
    5. Yang, Bei & Bai, Fengwu & Wang, Yan & Wang, Zhifeng, 2019. "Study on standby process of an air-based solid packed bed for flexible high-temperature heat storage: Experimental results and modelling," Applied Energy, Elsevier, vol. 238(C), pages 135-146.
    6. Soprani, Stefano & Marongiu, Fabrizio & Christensen, Ludvig & Alm, Ole & Petersen, Kenni Dinesen & Ulrich, Thomas & Engelbrecht, Kurt, 2019. "Design and testing of a horizontal rock bed for high temperature thermal energy storage," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    7. Knobloch, Kai & Muhammad, Yousif & Costa, Marta Soler & Moscoso, Fabrizio Mayta & Bahl, Christian & Alm, Ole & Engelbrecht, Kurt, 2022. "A partially underground rock bed thermal energy storage with a novel air flow configuration," Applied Energy, Elsevier, vol. 315(C).
    8. Gaviño, David & Cortés, Eduardo & García, Jesús & Calderón-Vásquez, Ignacio & Cardemil, José & Estay, Danilo & Barraza, Rodrigo, 2022. "A discrete element approach to model packed bed thermal storage," Applied Energy, Elsevier, vol. 325(C).
    9. Scharinger-Urschitz, Georg & Schwarzmayr, Paul & Walter, Heimo & Haider, Markus, 2020. "Partial cycle operation of latent heat storage with finned tubes," Applied Energy, Elsevier, vol. 280(C).
    10. Oró, Eduard & Castell, Albert & Chiu, Justin & Martin, Viktoria & Cabeza, Luisa F., 2013. "Stratification analysis in packed bed thermal energy storage systems," Applied Energy, Elsevier, vol. 109(C), pages 476-487.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Calderón-Vásquez, Ignacio & Cortés, Eduardo & García, Jesús & Segovia, Valentina & Caroca, Alejandro & Sarmiento, Cristóbal & Barraza, Rodrigo & Cardemil, José M., 2021. "Review on modeling approaches for packed-bed thermal storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    2. Xinming Xi & Zicheng Zhang & Huimin Wei & Zeyu Chen & Xiaoze Du, 2023. "Experimental Study of Simultaneous Charging and Discharging Process in Thermocline Phase Change Heat Storage System Based on Solar Energy," Sustainability, MDPI, vol. 15(9), pages 1-17, April.
    3. Fasquelle, T. & Falcoz, Q. & Neveu, P. & Hoffmann, J.-F., 2018. "A temperature threshold evaluation for thermocline energy storage in concentrated solar power plants," Applied Energy, Elsevier, vol. 212(C), pages 1153-1164.
    4. Magdalena Nemś, 2020. "Experimental Determination of the Influence of Shape on the Heat Transfer Process in a Crushed Granite Storage Bed," Energies, MDPI, vol. 13(24), pages 1-16, December.
    5. ELSihy, ELSaeed Saad & Xu, Chao & Du, Xiaoze, 2022. "Cyclic performance of cascaded latent heat thermocline energy storage systems for high-temperature applications," Energy, Elsevier, vol. 239(PC).
    6. Vannerem, S. & Neveu, P. & Falcoz, Q., 2021. "Experimental and numerical investigation of the impact of operating conditions on thermocline storage performance," Renewable Energy, Elsevier, vol. 168(C), pages 234-246.
    7. Zhao, Bing-chen & Cheng, Mao-song & Liu, Chang & Dai, Zhi-min, 2018. "System-level performance optimization of molten-salt packed-bed thermal energy storage for concentrating solar power," Applied Energy, Elsevier, vol. 226(C), pages 225-239.
    8. Yang, Bei & Bai, Fengwu & Wang, Yan & Wang, Zhifeng, 2019. "Study on standby process of an air-based solid packed bed for flexible high-temperature heat storage: Experimental results and modelling," Applied Energy, Elsevier, vol. 238(C), pages 135-146.
    9. Liang, Ting & Vecchi, Andrea & Knobloch, Kai & Sciacovelli, Adriano & Engelbrecht, Kurt & Li, Yongliang & Ding, Yulong, 2022. "Key components for Carnot Battery: Technology review, technical barriers and selection criteria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    10. Sedighi, Mohammadreza & Padilla, Ricardo Vasquez & Alamdari, Pedram & Lake, Maree & Rose, Andrew & Izadgoshasb, Iman & Taylor, Robert A., 2020. "A novel high-temperature (>700 °C), volumetric receiver with a packed bed of transparent and absorbing spheres," Applied Energy, Elsevier, vol. 264(C).
    11. Li Yang & Yunfeng Ren & Zhihua Wang & Zhouming Hang & Yunxia Luo, 2021. "Simulation and Economic Research of Circulating Cooling Water Waste Heat and Water Resource Recovery System," Energies, MDPI, vol. 14(9), pages 1-13, April.
    12. Yang, Wei & Bao, Jingjing & Liu, Hongtao & Zhang, Jun & Guo, Lin, 2023. "Low-grade heat to hydrogen: Current technologies, challenges and prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    13. Igor Burmistrov & Rita Khanna & Nikolay Gorshkov & Nikolay Kiselev & Denis Artyukhov & Elena Boychenko & Andrey Yudin & Yuri Konyukhov & Maksim Kravchenko & Alexander Gorokhovsky & Denis Kuznetsov, 2022. "Advances in Thermo-Electrochemical (TEC) Cell Performances for Harvesting Low-Grade Heat Energy: A Review," Sustainability, MDPI, vol. 14(15), pages 1-17, August.
    14. Porteiro, Jacobo & Míguez, José Luis & Crespo, Bárbara & López González, Luis María & De Lara, José, 2015. "Experimental investigation of the thermal response of a thermal storage tank partially filled with different PCMs (phase change materials) to a steep demand," Energy, Elsevier, vol. 91(C), pages 202-214.
    15. Markus Fritz & Ali Aydemir & Liselotte Schebek, 2022. "How Much Excess Heat Might Be Used in Buildings? A Spatial Analysis at the Municipal Level in Germany," Energies, MDPI, vol. 15(17), pages 1-17, August.
    16. Huiqian Guo & ELSaeed Saad ELSihy & Zhirong Liao & Xiaoze Du, 2021. "A Comparative Study on the Performance of Single and Multi-Layer Encapsulated Phase Change Material Packed-Bed Thermocline Tanks," Energies, MDPI, vol. 14(8), pages 1-24, April.
    17. Li, Chuan & Li, Qi & Ding, Yulong, 2019. "Investigation on the thermal performance of a high temperature packed bed thermal energy storage system containing carbonate salt based composite phase change materials," Applied Energy, Elsevier, vol. 247(C), pages 374-388.
    18. Firth, Anton & Zhang, Bo & Yang, Aidong, 2019. "Quantification of global waste heat and its environmental effects," Applied Energy, Elsevier, vol. 235(C), pages 1314-1334.
    19. Soh, Alex & Huang, Zhifeng & Shao, Yunlin & Islam, M.R. & Chua, K.J., 2023. "On the study of a thermal system for continuous cold energy harvesting and supply from LNG regasification," Energy, Elsevier, vol. 275(C).
    20. Tokarev, M.M. & Girnik, I.S. & Aristov, Yu.I., 2022. "Adsorptive transformation of ultralow-temperature heat using a “Heat from Cold” cycle," Energy, Elsevier, vol. 238(PC).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:337:y:2023:i:c:s0306261923002817. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.