IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v384y2025ics0306261925001059.html
   My bibliography  Save this article

Online behavioral matching for proton exchange membrane water electrolyzers: A digital twin approach

Author

Listed:
  • Liu, Shaojie
  • Chen, YangQuan
  • Wang, Yongdong
  • Li, Donghai
  • Zhu, Min

Abstract

The integration of proton exchange membrane water electrolyzers (PEMWEs) with renewable energy sources is pivotal for advancing sustainable hydrogen production. Digital twins (DTs) offer significant benefits by providing real-time virtual representations of physical electrolyzers without disrupting operations. However, conventional DT frameworks often rely on offline optimization to match the behavior of the DT with the physical system, which can result in mismatches during real-time operation due to data and algorithm limitations and the uncertainties of wind and solar power inputs. To address these mismatches, this study introduces a novel DT framework featuring an online behavioral matching mechanism that corrects real-time errors between the DT and physical electrolyzers. By utilizing advanced behavioral matching techniques and real-time error correction mechanisms, the proposed DT system dynamically aligns with the physical electrolyzer’s performance. Experimental validation involved a personal computer running the DT, a microcomputer with the PEMWE simulator, and a wireless cloud communication router. The results indicate that the proposed mechanism reduced errors by over 65% in the majority of cases and improved accuracy by up to 3% at most compared to traditional offline methods, suggesting that the DT can maintain more accurate real-time synchronization. While these findings are promising, further research is needed to fully assess the long-term stability and scalability of the framework in industrial applications. The enhanced DT framework shows potential to significantly improve system accuracy and reliability, providing a robust solution for real-time optimization in renewable hydrogen production. This study offers a valuable step towards more resilient and efficient cyber–physical systems, with potential applications extending beyond hydrogen production.

Suggested Citation

  • Liu, Shaojie & Chen, YangQuan & Wang, Yongdong & Li, Donghai & Zhu, Min, 2025. "Online behavioral matching for proton exchange membrane water electrolyzers: A digital twin approach," Applied Energy, Elsevier, vol. 384(C).
  • Handle: RePEc:eee:appene:v:384:y:2025:i:c:s0306261925001059
    DOI: 10.1016/j.apenergy.2025.125375
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925001059
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125375?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Shaojie & Wang, Zhaohui & Yang, Dong & Wang, Yichen & Wang, Yongdong & Li, Donghai & Zhu, Min, 2025. "Robust frequency response-based active disturbance rejection control to mitigate thermoacoustic instability in the Rijke tube burner," Applied Energy, Elsevier, vol. 378(PA).
    2. Vincenzo Liso & Giorgio Savoia & Samuel Simon Araya & Giovanni Cinti & Søren Knudsen Kær, 2018. "Modelling and Experimental Analysis of a Polymer Electrolyte Membrane Water Electrolysis Cell at Different Operating Temperatures," Energies, MDPI, vol. 11(12), pages 1-18, November.
    3. Cinti, Giovanni & Desideri, Umberto, 2015. "SOFC fuelled with reformed urea," Applied Energy, Elsevier, vol. 154(C), pages 242-253.
    4. Cinti, Giovanni & Frattini, Domenico & Jannelli, Elio & Desideri, Umberto & Bidini, Gianni, 2017. "Coupling Solid Oxide Electrolyser (SOE) and ammonia production plant," Applied Energy, Elsevier, vol. 192(C), pages 466-476.
    5. Bai, Fan & Quan, Hong-Bing & Yin, Ren-Jie & Zhang, Zhuo & Jin, Shu-Qi & He, Pu & Mu, Yu-Tong & Gong, Xiao-Ming & Tao, Wen-Quan, 2022. "Three-dimensional multi-field digital twin technology for proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 324(C).
    6. Diego Bairrão & João Soares & José Almeida & John F. Franco & Zita Vale, 2023. "Green Hydrogen and Energy Transition: Current State and Prospects in Portugal," Energies, MDPI, vol. 16(1), pages 1-23, January.
    7. Liponi, Angelica & Frate, Guido Francesco & Baccioli, Andrea & Ferrari, Lorenzo & Desideri, Umberto, 2022. "Impact of wind speed distribution and management strategy on hydrogen production from wind energy," Energy, Elsevier, vol. 256(C).
    8. Cinti, Giovanni & Baldinelli, Arianna & Di Michele, Alessandro & Desideri, Umberto, 2016. "Integration of Solid Oxide Electrolyzer and Fischer-Tropsch: A sustainable pathway for synthetic fuel," Applied Energy, Elsevier, vol. 162(C), pages 308-320.
    9. do Amaral, J.V.S. & dos Santos, C.H. & Montevechi, J.A.B. & de Queiroz, A.R., 2023. "Energy Digital Twin applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    10. Zheng, Nan & Zhang, Hanfei & Duan, Liqiang & Wang, Qiushi & Bischi, Aldo & Desideri, Umberto, 2023. "Techno-economic analysis of a novel solar-driven PEMEC-SOFC-based multi-generation system coupled parabolic trough photovoltaic thermal collector and thermal energy storage," Applied Energy, Elsevier, vol. 331(C).
    11. Chaudry, Modassar & Jayasuriya, Lahiru & Blainey, Simon & Lovric, Milan & Hall, Jim W. & Russell, Tom & Jenkins, Nick & Wu, Jianzhong, 2022. "The implications of ambitious decarbonisation of heat and road transport for Britain’s net zero carbon energy systems," Applied Energy, Elsevier, vol. 305(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bargiacchi, Eleonora & Antonelli, Marco & Desideri, Umberto, 2019. "A comparative assessment of Power-to-Fuel production pathways," Energy, Elsevier, vol. 183(C), pages 1253-1265.
    2. Kaur, Gurpreet & Kulkarni, Aniruddha P. & Giddey, Sarbjit & Badwal, Sukhvinder P.S., 2018. "Ceramic composite cathodes for CO2 conversion to CO in solid oxide electrolysis cells," Applied Energy, Elsevier, vol. 221(C), pages 131-138.
    3. Polverino, Pierpaolo & Sorrentino, Marco & Pianese, Cesare, 2017. "A model-based diagnostic technique to enhance faults isolability in Solid Oxide Fuel Cell systems," Applied Energy, Elsevier, vol. 204(C), pages 1198-1214.
    4. Damien Guilbert & Gianpaolo Vitale, 2019. "Dynamic Emulation of a PEM Electrolyzer by Time Constant Based Exponential Model," Energies, MDPI, vol. 12(4), pages 1-17, February.
    5. Roy, Dibyendu & Roy, Sumit & Smallbone, Andrew & Roskilly, Anthony Paul, 2024. "Assessing the techno-economic viability of a trigeneration system integrating ammonia-fuelled solid oxide fuel cell," Applied Energy, Elsevier, vol. 357(C).
    6. Song, Yuguang & Xia, Mingchao & Yang, Liu & Chen, Qifang & Su, Su, 2023. "Multi-granularity source-load-storage cooperative dispatch based on combined robust optimization and stochastic optimization for a highway service area micro-energy grid," Renewable Energy, Elsevier, vol. 205(C), pages 747-762.
    7. Ramachandran Kannan & Evangelos Panos & Stefan Hirschberg & Tom Kober, 2022. "A net‐zero Swiss energy system by 2050: Technological and policy options for the transition of the transportation sector," Futures & Foresight Science, John Wiley & Sons, vol. 4(3-4), September.
    8. Zhang, Hanfei & Wang, Ligang & Van herle, Jan & Maréchal, François & Desideri, Umberto, 2020. "Techno-economic evaluation of biomass-to-fuels with solid-oxide electrolyzer," Applied Energy, Elsevier, vol. 270(C).
    9. Fiammetta Rita Bianchi & Arianna Baldinelli & Linda Barelli & Giovanni Cinti & Emilio Audasso & Barbara Bosio, 2020. "Multiscale Modeling for Reversible Solid Oxide Cell Operation," Energies, MDPI, vol. 13(19), pages 1-16, September.
    10. Zhang, Xiaofeng & Su, Junjie & Jiao, Fan & Zeng, Rong & Pan, Jinjun & He, Xu & Deng, Qiaolin & Li, Hongqiang, 2024. "Performance investigation and operation optimization of an innovative hybrid renewable energy integration system for commercial building complex and hydrogen vehicles," Energy, Elsevier, vol. 301(C).
    11. Diana Joița & Mirela Panait & Carmen-Elena Dobrotă & Alin Diniță & Adrian Neacșa & Laura Elly Naghi, 2023. "The European Dilemma—Energy Security or Green Transition," Energies, MDPI, vol. 16(9), pages 1-16, April.
    12. Pantò, Fabiola & Siracusano, Stefania & Briguglio, Nicola & Aricò, Antonino Salvatore, 2020. "Durability of a recombination catalyst-based membrane-electrode assembly for electrolysis operation at high current density," Applied Energy, Elsevier, vol. 279(C).
    13. Paniz Arashrad & Shayan Sharafi Laleh & Shayan Rabet & Mortaza Yari & Saeed Soltani & Marc A. Rosen, 2025. "Real-Time Modeling of a Solar-Driven Power Plant with Green Hydrogen, Electricity, and Fresh Water Production: Techno-Economics and Optimization," Sustainability, MDPI, vol. 17(8), pages 1-29, April.
    14. Xing, Xuetao & Lin, Jin & Song, Yonghua & Hu, Qiang & Zhou, You & Mu, Shujun, 2018. "Optimization of hydrogen yield of a high-temperature electrolysis system with coordinated temperature and feed factors at various loading conditions: A model-based study," Applied Energy, Elsevier, vol. 232(C), pages 368-385.
    15. Muhammad Aziz & Agung Tri Wijayanta & Asep Bayu Dani Nandiyanto, 2020. "Ammonia as Effective Hydrogen Storage: A Review on Production, Storage and Utilization," Energies, MDPI, vol. 13(12), pages 1-25, June.
    16. Frank Labunski & Birte Schnurr & Julia Pössinger & Thomas Götz, 2024. "Environmental Impact of e-Fuels via the Solid Oxide Electrolyzer Cell (SOEC) and Fischer–Tropsch Synthesis (FTS) Route for Use in Germany," Energies, MDPI, vol. 17(5), pages 1-15, February.
    17. Zhang, Hanfei & Wang, Ligang & Van herle, Jan & Maréchal, François & Desideri, Umberto, 2020. "Techno-economic comparison of green ammonia production processes," Applied Energy, Elsevier, vol. 259(C).
    18. Chen, Bin & Xu, Haoran & Ni, Meng, 2017. "Modelling of SOEC-FT reactor: Pressure effects on methanation process," Applied Energy, Elsevier, vol. 185(P1), pages 814-824.
    19. Nasser, Mohamed, 2025. "Biomass valorization in green hydrogen production, storage and transportation using low and high-temperature water electrolyzers: A thermo-economic approach," Energy, Elsevier, vol. 319(C).
    20. Zhang, Hanfei & Wang, Ligang & Van herle, Jan & Maréchal, François & Desideri, Umberto, 2021. "Techno-economic comparison of 100% renewable urea production processes," Applied Energy, Elsevier, vol. 284(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:384:y:2025:i:c:s0306261925001059. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.