IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i24p9604-d1007021.html
   My bibliography  Save this article

Research on Low-Carbon Energy Sharing through the Alliance of Integrated Energy Systems with Multiple Uncertainties

Author

Listed:
  • Zhihan Shi

    (College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing 211899, China)

  • Weisong Han

    (College of Transportation Engineering, Nanjing Tech University, Nanjing 211899, China)

  • Guangming Zhang

    (College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing 211899, China)

  • Zhiqing Bai

    (College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing 211899, China)

  • Mingxiang Zhu

    (College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing 211899, China
    Taizhou College, Nanjing Normal University, Taizhou 225300, China)

  • Xiaodong Lv

    (College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing 211899, China)

Abstract

It is of great significance to introduce the conception of a sharing economy into the electricity industry, which can promote the dispatch of multiple integrated energy systems. On the one hand, it is difficult to reveal the behaviors of complex players with multi-energy coupling through the traditional centralized optimization method of single electric energy. On the other hand, the uncertain fluctuations of renewable energy, such as wind power and photovoltaic, have posed great challenges to market transactions. First, the relationship and the functions of all stakeholders in the system are described in this paper, followed by the establishment of flexible resource models such as demand response and energy storage devices. On this basis, a low-carbon dispatching framework of multiple regional gas–electric integrated energy systems is then constructed under the guidance of cooperative game theory. The contribution indexes are established to measure the degree of energy sharing among the subsystems, and the method of asymmetric Nash bargaining is used to settle the interests of each subsystem. Second, a robust optimization model of multiple regional systems is established in response to multiple uncertainties from renewable energy and load. Finally, the numerical example proves that the proposed mechanism can increase the benefits of each integrated energy system player. Moreover, it helps the system to yield optimal benefits in the face of uncertainties and provides a reference on how to realize energy sharing under uncertainties from source load.

Suggested Citation

  • Zhihan Shi & Weisong Han & Guangming Zhang & Zhiqing Bai & Mingxiang Zhu & Xiaodong Lv, 2022. "Research on Low-Carbon Energy Sharing through the Alliance of Integrated Energy Systems with Multiple Uncertainties," Energies, MDPI, vol. 15(24), pages 1-20, December.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9604-:d:1007021
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/24/9604/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/24/9604/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alabi, Tobi Michael & Lu, Lin & Yang, Zaiyue, 2022. "Data-driven optimal scheduling of multi-energy system virtual power plant (MEVPP) incorporating carbon capture system (CCS), electric vehicle flexibility, and clean energy marketer (CEM) strategy," Applied Energy, Elsevier, vol. 314(C).
    2. Hong, Bowen & Zhang, Weitong & Zhou, Yue & Chen, Jian & Xiang, Yue & Mu, Yunfei, 2018. "Energy-Internet-oriented microgrid energy management system architecture and its application in China," Applied Energy, Elsevier, vol. 228(C), pages 2153-2164.
    3. Gholami, M. & Sanjari, M.J., 2021. "Multiobjective energy management in battery-integrated home energy systems," Renewable Energy, Elsevier, vol. 177(C), pages 967-975.
    4. Zhengjie Li & Zhisheng Zhang, 2021. "Day-Ahead and Intra-Day Optimal Scheduling of Integrated Energy System Considering Uncertainty of Source & Load Power Forecasting," Energies, MDPI, vol. 14(9), pages 1-14, April.
    5. Tengfei Ma & Junyong Wu & Liangliang Hao & Huaguang Yan & Dezhi Li, 2018. "A Real-Time Pricing Scheme for Energy Management in Integrated Energy Systems: A Stackelberg Game Approach," Energies, MDPI, vol. 11(10), pages 1-19, October.
    6. Cheng, Ying & Liu, Mingbo & Chen, Honglin & Yang, Ziwei, 2021. "Optimization of multi-carrier energy system based on new operation mechanism modelling of power-to-gas integrated with CO2-based electrothermal energy storage," Energy, Elsevier, vol. 216(C).
    7. Tushar, Wayes & Saha, Tapan Kumar & Yuen, Chau & Morstyn, Thomas & McCulloch, Malcolm D. & Poor, H. Vincent & Wood, Kristin L., 2019. "A motivational game-theoretic approach for peer-to-peer energy trading in the smart grid," Applied Energy, Elsevier, vol. 243(C), pages 10-20.
    8. Liu, Zhiqiang & Cui, Yanping & Wang, Jiaqiang & Yue, Chang & Agbodjan, Yawovi Souley & Yang, Yu, 2022. "Multi-objective optimization of multi-energy complementary integrated energy systems considering load prediction and renewable energy production uncertainties," Energy, Elsevier, vol. 254(PC).
    9. Chen, Cong & Sun, Hongbin & Shen, Xinwei & Guo, Ye & Guo, Qinglai & Xia, Tian, 2019. "Two-stage robust planning-operation co-optimization of energy hub considering precise energy storage economic model," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    10. Zhou, Yuqi & Yu, Wenbin & Zhu, Shanying & Yang, Bo & He, Jianping, 2021. "Distributionally robust chance-constrained energy management of an integrated retailer in the multi-energy market," Applied Energy, Elsevier, vol. 286(C).
    11. Huang, Yujing & Wang, Yudong & Liu, Nian, 2022. "A two-stage energy management for heat-electricity integrated energy system considering dynamic pricing of Stackelberg game and operation strategy optimization," Energy, Elsevier, vol. 244(PA).
    12. Oveis Abedinia & Mehdi Bagheri, 2021. "Power Distribution Optimization Based on Demand Respond with Improved Multi-Objective Algorithm in Power System Planning," Energies, MDPI, vol. 14(10), pages 1-18, May.
    13. Zhou, Suyang & Sun, Kaiyu & Wu, Zhi & Gu, Wei & Wu, Gaoxiang & Li, Zhe & Li, Junjie, 2020. "Optimized operation method of small and medium-sized integrated energy system for P2G equipment under strong uncertainty," Energy, Elsevier, vol. 199(C).
    14. Quan, Hao & Srinivasan, Dipti & Khambadkone, Ashwin M. & Khosravi, Abbas, 2015. "A computational framework for uncertainty integration in stochastic unit commitment with intermittent renewable energy sources," Applied Energy, Elsevier, vol. 152(C), pages 71-82.
    15. Zhong, Junjie & Cao, Yijia & Li, Yong & Tan, Yi & Peng, Yanjian & Cao, Lihua & Zeng, Zilong, 2021. "Distributed modeling considering uncertainties for robust operation of integrated energy system," Energy, Elsevier, vol. 224(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Naixin & Gu, Wenbo & Zheng, Zipeng & Ma, Tao, 2023. "Multi-objective bi-level planning of the integrated energy system considering uncertain user loads and carbon emission during the equipment manufacturing process," Renewable Energy, Elsevier, vol. 216(C).
    2. Zhong, Junjie & Cao, Yijia & Li, Yong & Tan, Yi & Peng, Yanjian & Cao, Lihua & Zeng, Zilong, 2021. "Distributed modeling considering uncertainties for robust operation of integrated energy system," Energy, Elsevier, vol. 224(C).
    3. Jiang, Sufan & Gao, Shan & Pan, Guangsheng & Zhao, Xin & Liu, Yu & Guo, Yasen & Wang, Sicheng, 2020. "A novel robust security constrained unit commitment model considering HVDC regulation," Applied Energy, Elsevier, vol. 278(C).
    4. Li, Bo & Li, Xu & Su, Qingyu, 2022. "A system and game strategy for the isolated island electric-gas deeply coupled energy network," Applied Energy, Elsevier, vol. 306(PA).
    5. Alabi, Tobi Michael & Lu, Lin & Yang, Zaiyue, 2021. "Stochastic optimal planning scheme of a zero-carbon multi-energy system (ZC-MES) considering the uncertainties of individual energy demand and renewable resources: An integrated chance-constrained and," Energy, Elsevier, vol. 232(C).
    6. Li, Ke & Ye, Ning & Li, Shuzhen & Wang, Haiyang & Zhang, Chenghui, 2023. "Distributed collaborative operation strategies in multi-agent integrated energy system considering integrated demand response based on game theory," Energy, Elsevier, vol. 273(C).
    7. Ma, Ning & Fan, Lurong, 2023. "Double recovery strategy of carbon for coal-to-power based on a multi-energy system with tradable green certificates," Energy, Elsevier, vol. 273(C).
    8. Qiu, Haifeng & Gu, Wei & Liu, Pengxiang & Sun, Qirun & Wu, Zhi & Lu, Xi, 2022. "Application of two-stage robust optimization theory in power system scheduling under uncertainties: A review and perspective," Energy, Elsevier, vol. 251(C).
    9. Wang, Yubin & Zheng, Yanchong & Yang, Qiang, 2023. "Optimal energy management of integrated energy systems for strategic participation in competitive electricity markets," Energy, Elsevier, vol. 278(PA).
    10. Yanbin Li & Yanting Sun & Junjie Zhang & Feng Zhang, 2022. "Optimal Microgrid System Operating Strategy Considering Variable Wind Power Outputs and the Cooperative Game among Subsystem Operators," Energies, MDPI, vol. 15(18), pages 1-20, September.
    11. Gan, Wei & Yan, Mingyu & Yao, Wei & Wen, Jinyu, 2021. "Peer to peer transactive energy for multiple energy hub with the penetration of high-level renewable energy," Applied Energy, Elsevier, vol. 295(C).
    12. Lasemi, Mohammad Ali & Arabkoohsar, Ahmad & Hajizadeh, Amin & Mohammadi-ivatloo, Behnam, 2022. "A comprehensive review on optimization challenges of smart energy hubs under uncertainty factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    13. Jiang, Yanni & Zhou, Kaile & Lu, Xinhui & Yang, Shanlin, 2020. "Electricity trading pricing among prosumers with game theory-based model in energy blockchain environment," Applied Energy, Elsevier, vol. 271(C).
    14. Ren, Hongbo & Jiang, Zipei & Wu, Qiong & Li, Qifen & Yang, Yongwen, 2022. "Integrated optimization of a regional integrated energy system with thermal energy storage considering both resilience and reliability," Energy, Elsevier, vol. 261(PB).
    15. Li, Songrui & Zhang, Lihui & Nie, Lei & Wang, Jianing, 2022. "Trading strategy and benefit optimization of load aggregators in integrated energy systems considering integrated demand response: A hierarchical Stackelberg game," Energy, Elsevier, vol. 249(C).
    16. Wu, Qunli & Li, Chunxiang, 2023. "Modeling and operation optimization of hydrogen-based integrated energy system with refined power-to-gas and carbon-capture-storage technologies under carbon trading," Energy, Elsevier, vol. 270(C).
    17. Abdin, Adam F. & Caunhye, Aakil & Zio, Enrico & Cardin, Michel-Alexandre, 2022. "Optimizing generation expansion planning with operational uncertainty: A multistage adaptive robust approach," Applied Energy, Elsevier, vol. 306(PA).
    18. Zhang, Mingyang & Zhou, Ming & Wu, Zhaoyuan & Yang, Hongji & Li, Gengyin, 2022. "A ramp capability-aware scheduling strategy for integrated electricity-gas systems," Energy, Elsevier, vol. 241(C).
    19. Soheil Mohseni & Alan C. Brent, 2022. "A Metaheuristic-Based Micro-Grid Sizing Model with Integrated Arbitrage-Aware Multi-Day Battery Dispatching," Sustainability, MDPI, vol. 14(19), pages 1-24, October.
    20. Fan, Wei & Tan, Zhongfu & Li, Fanqi & Zhang, Amin & Ju, Liwei & Wang, Yuwei & De, Gejirifu, 2023. "A two-stage optimal scheduling model of integrated energy system based on CVaR theory implementing integrated demand response," Energy, Elsevier, vol. 263(PC).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9604-:d:1007021. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.