IDEAS home Printed from https://ideas.repec.org/a/spr/infosf/v23y2021i6d10.1007_s10796-021-10131-x.html
   My bibliography  Save this article

The Role of Artificial Intelligence in Fighting the COVID-19 Pandemic

Author

Listed:
  • Francesco Piccialli

    (University of Naples Federico II)

  • Vincenzo Schiano Cola

    (University of Naples Federico II)

  • Fabio Giampaolo

    (University of Naples Federico II)

  • Salvatore Cuomo

    (University of Naples Federico II)

Abstract

The first few months of 2020 have profoundly changed the way we live our lives and carry out our daily activities. Although the widespread use of futuristic robotaxis and self-driving commercial vehicles has not yet become a reality, the COVID-19 pandemic has dramatically accelerated the adoption of Artificial Intelligence (AI) in different fields. We have witnessed the equivalent of two years of digital transformation compressed into just a few months. Whether it is in tracing epidemiological peaks or in transacting contactless payments, the impact of these developments has been almost immediate, and a window has opened up on what is to come. Here we analyze and discuss how AI can support us in facing the ongoing pandemic. Despite the numerous and undeniable contributions of AI, clinical trials and human skills are still required. Even if different strategies have been developed in different states worldwide, the fight against the pandemic seems to have found everywhere a valuable ally in AI, a global and open-source tool capable of providing assistance in this health emergency. A careful AI application would enable us to operate within this complex scenario involving healthcare, society and research.

Suggested Citation

  • Francesco Piccialli & Vincenzo Schiano Cola & Fabio Giampaolo & Salvatore Cuomo, 2021. "The Role of Artificial Intelligence in Fighting the COVID-19 Pandemic," Information Systems Frontiers, Springer, vol. 23(6), pages 1467-1497, December.
  • Handle: RePEc:spr:infosf:v:23:y:2021:i:6:d:10.1007_s10796-021-10131-x
    DOI: 10.1007/s10796-021-10131-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10796-021-10131-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10796-021-10131-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cheng Jin & Weixiang Chen & Yukun Cao & Zhanwei Xu & Zimeng Tan & Xin Zhang & Lei Deng & Chuansheng Zheng & Jie Zhou & Heshui Shi & Jianjiang Feng, 2020. "Development and evaluation of an artificial intelligence system for COVID-19 diagnosis," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    2. Shiqi Ou & Xin He & Weiqi Ji & Wei Chen & Lang Sui & Yu Gan & Zifeng Lu & Zhenhong Lin & Sili Deng & Steven Przesmitzki & Jessey Bouchard, 2020. "Machine learning model to project the impact of COVID-19 on US motor gasoline demand," Nature Energy, Nature, vol. 5(9), pages 666-673, September.
    3. Kerstin Beer & Dmytro Bondarenko & Terry Farrelly & Tobias J. Osborne & Robert Salzmann & Daniel Scheiermann & Ramona Wolf, 2020. "Training deep quantum neural networks," Nature Communications, Nature, vol. 11(1), pages 1-6, December.
    4. Mingxuan Che & Kui Yao & Chao Che & Zhangwei Cao & Fanchen Kong, 2021. "Knowledge-Graph-Based Drug Repositioning against COVID-19 by Graph Convolutional Network with Attention Mechanism," Future Internet, MDPI, vol. 13(1), pages 1-10, January.
    5. Peter Bogner & Ilaria Capua & David J. Lipman & Nancy J. Cox, 2006. "A global initiative on sharing avian flu data," Nature, Nature, vol. 442(7106), pages 981-981, August.
    6. Wenhua Liang & Jianhua Yao & Ailan Chen & Qingquan Lv & Mark Zanin & Jun Liu & SookSan Wong & Yimin Li & Jiatao Lu & Hengrui Liang & Guoqiang Chen & Haiyan Guo & Jun Guo & Rong Zhou & Limin Ou & Niyun, 2020. "Early triage of critically ill COVID-19 patients using deep learning," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    7. Sadefo Kamdem, Jules & Bandolo Essomba, Rose & Njong Berinyuy, James, 2020. "Deep learning models for forecasting and analyzing the implications of COVID-19 spread on some commodities markets volatilities," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    8. Paul T E Cusack, 2020. "The Human Brain," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 31(3), pages 24261-24266, October.
    9. Abdel-Basset, Mohamed & Chang, Victor & Nabeeh, Nada A., 2021. "An intelligent framework using disruptive technologies for COVID-19 analysis," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    10. Fabio Della Rossa & Davide Salzano & Anna Di Meglio & Francesco De Lellis & Marco Coraggio & Carmela Calabrese & Agostino Guarino & Ricardo Cardona-Rivera & Pietro De Lellis & Davide Liuzza & Francesc, 2020. "A network model of Italy shows that intermittent regional strategies can alleviate the COVID-19 epidemic," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    11. Shiqi Ou & Xin He & Weiqi Ji & Wei Chen & Lang Sui & Yu Gan & Zifeng Lu & Zhenhong Lin & Sili Deng & Steven Przesmitzki & Jessey Bouchard, 2020. "Author Correction: Machine learning model to project the impact of COVID-19 on US motor gasoline demand," Nature Energy, Nature, vol. 5(12), pages 1051-1052, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shahzad, Umer & Ghaemi Asl, Mahdi & Panait, Mirela & Sarker, Tapan & Apostu, Simona Andreea, 2023. "Emerging interaction of artificial intelligence with basic materials and oil & gas companies: A comparative look at the Islamic vs. conventional markets," Resources Policy, Elsevier, vol. 80(C).
    2. Dal Mas, Francesca & Massaro, Maurizio & Rippa, Pierluigi & Secundo, Giustina, 2023. "The challenges of digital transformation in healthcare: An interdisciplinary literature review, framework, and future research agenda," Technovation, Elsevier, vol. 123(C).
    3. Eunji Lee & Jin-young Kim & Junchul Kim & Chulmo Koo, 2023. "Information Privacy Behaviors during the COVID-19 Pandemic: Focusing on the Restaurant Context," Information Systems Frontiers, Springer, vol. 25(5), pages 1829-1845, October.
    4. Victor Chang & Carole Goble & Muthu Ramachandran & Lazarus Jegatha Deborah & Reinhold Behringer, 2021. "Editorial on Machine Learning, AI and Big Data Methods and Findings for COVID-19," Information Systems Frontiers, Springer, vol. 23(6), pages 1363-1367, December.
    5. Ortiz-Barrios, Miguel & Arias-Fonseca, Sebastián & Ishizaka, Alessio & Barbati, Maria & Avendaño-Collante, Betty & Navarro-Jiménez, Eduardo, 2023. "Artificial intelligence and discrete-event simulation for capacity management of intensive care units during the Covid-19 pandemic: A case study," Journal of Business Research, Elsevier, vol. 160(C).
    6. Mazen El-Masri & Karim Al-Yafi & Muhammad Mustafa Kamal, 2023. "A Task-Technology-Identity Fit Model of Smartwatch Utilisation and User Satisfaction: A Hybrid SEM-Neural Network Approach," Information Systems Frontiers, Springer, vol. 25(2), pages 835-852, April.
    7. Nick Drydakis, 2022. "Artificial Intelligence and Reduced SMEs’ Business Risks. A Dynamic Capabilities Analysis During the COVID-19 Pandemic," Information Systems Frontiers, Springer, vol. 24(4), pages 1223-1247, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Qiang & Li, Shuyu & Zhang, Min & Li, Rongrong, 2022. "Impact of COVID-19 pandemic on oil consumption in the United States: A new estimation approach," Energy, Elsevier, vol. 239(PC).
    2. Bocklet, Johanna, 2020. "The Reformed EU ETS in Times of Economic Crises: the Case of the COVID-19 Pandemic," EWI Working Papers 2020-10, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    3. Feng Wang & Min Wu, 2021. "The Impacts of COVID-19 on China’s Economy and Energy in the Context of Trade Protectionism," IJERPH, MDPI, vol. 18(23), pages 1-23, December.
    4. Nikolaos Apostolopoulos & Panagiotis Liargovas & Nikolaos Rodousakis & George Soklis, 2022. "COVID-19 in US Economy: Structural Analysis and Policy Proposals," Sustainability, MDPI, vol. 14(13), pages 1-15, June.
    5. Hui Zhu, 2023. "Oil Demand Forecasting in Importing and Exporting Countries: AI-Based Analysis of Endogenous and Exogenous Factors," Sustainability, MDPI, vol. 15(18), pages 1-19, September.
    6. Hanmin Dong & Xiujie Tan & Si Cheng & Yishuang Liu, 2023. "COVID-19, recovery policies and the resilience of EU ETS," Economic Change and Restructuring, Springer, vol. 56(5), pages 2965-2991, October.
    7. Zhang, Xiaokong & Chai, Jian & Tian, Lingyue & Yang, Ying & Zhang, Zhe George & Pan, Yue, 2023. "Forecast and structural characteristics of China's oil product consumption embedded in bottom-line thinking," Energy, Elsevier, vol. 278(PA).
    8. Li, Zheng & Zhou, Bo & Hensher, David A., 2022. "Forecasting automobile gasoline demand in Australia using machine learning-based regression," Energy, Elsevier, vol. 239(PD).
    9. Prakash Chandra Mishra & Anand Gupta & Saikat Samanta & Rihana B. Ishaq & Fuad Khoshnaw, 2022. "Framework for Energy-Averaged Emission Mitigation Technique Adopting Gasoline-Methanol Blend Replacement and Piston Design Exchange," Energies, MDPI, vol. 15(19), pages 1-26, September.
    10. Tayarani N., Mohammad-H., 2021. "Applications of artificial intelligence in battling against covid-19: A literature review," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    11. Dominic Holland & Oleksandr Frei & Rahul Desikan & Chun-Chieh Fan & Alexey A Shadrin & Olav B Smeland & V S Sundar & Paul Thompson & Ole A Andreassen & Anders M Dale, 2020. "Beyond SNP heritability: Polygenicity and discoverability of phenotypes estimated with a univariate Gaussian mixture model," PLOS Genetics, Public Library of Science, vol. 16(5), pages 1-30, May.
    12. Gao, Yixuan & Malone, Trey & Schaefer, K. Aleks & Myers, Robert J., 2023. "Disentangling Short-Run COVID-19 Price Impact Pathways in the US Corn Market," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 48(2), May.
    13. Julia Berezutskaya & Zachary V Freudenburg & Umut Güçlü & Marcel A J van Gerven & Nick F Ramsey, 2020. "Brain-optimized extraction of complex sound features that drive continuous auditory perception," PLOS Computational Biology, Public Library of Science, vol. 16(7), pages 1-34, July.
    14. Huang, Fangyu & Tan, Xiaoqing & Huang, Rui & Xu, Qingshan, 2022. "Variational convolutional neural networks classifiers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    15. Abigail B. Schneider & Bridget Leonard, 2022. "From anxiety to control: Mask‐wearing, perceived marketplace influence, and emotional well‐being during the COVID‐19 pandemic," Journal of Consumer Affairs, Wiley Blackwell, vol. 56(1), pages 97-119, March.
    16. Myladis R. Cogollo & Gilberto González-Parra & Abraham J. Arenas, 2021. "Modeling and Forecasting Cases of RSV Using Artificial Neural Networks," Mathematics, MDPI, vol. 9(22), pages 1-20, November.
    17. Geonhui Lee & Woong Choi & Hanjin Jo & Wookhyun Park & Jaehyo Kim, 2020. "Analysis of motor control strategy for frontal and sagittal planes of circular tracking movements using visual feedback noise from velocity change and depth information," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-22, November.
    18. Odelaisy León-Triana & Julián Pérez-Beteta & David Albillo & Ana Ortiz de Mendivil & Luis Pérez-Romasanta & Elisabet González-Del Portillo & Manuel Llorente & Natalia Carballo & Estanislao Arana & Víc, 2021. "Brain Metastasis Response to Stereotactic Radio Surgery: A Mathematical Approach," Mathematics, MDPI, vol. 9(7), pages 1-19, March.
    19. Yoganathan, Vignesh & Osburg, Victoria-Sophie, 2024. "Heterogenous evaluations of autonomous vehicle services: An extended theoretical framework and empirical evidence," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    20. Mirren Charnley & Saba Islam & Guneet K. Bindra & Jeremy Engwirda & Julian Ratcliffe & Jiangtao Zhou & Raffaele Mezzenga & Mark D. Hulett & Kyunghoon Han & Joshua T. Berryman & Nicholas P. Reynolds, 2022. "Neurotoxic amyloidogenic peptides in the proteome of SARS-COV2: potential implications for neurological symptoms in COVID-19," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:infosf:v:23:y:2021:i:6:d:10.1007_s10796-021-10131-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.