IDEAS home Printed from https://ideas.repec.org/a/spr/infosf/v27y2025i1d10.1007_s10796-024-10551-5.html
   My bibliography  Save this article

A Grey Combined Prediction Model for Medical Treatment Risk Analysis during Pandemics

Author

Listed:
  • R. Rajesh

    (Indian Institute of Management Tiruchirappalli)

Abstract

The role of information systems (IS) were widely discoursed during the spread of the COVID-19 outbreak. We have focused on developing a decision support systems (DSS) based on a combined prediction model, that can essentially be used at the start of any pandemic. Convalescent plasma therapy is generally applied during the spread of a pandemic as a therapy method that transfuses blood plasma from the people, who have recovered from an illness to treat critical cases. We observe, analyse, and predict the risks associated with the treatment effects of convalescent plasma therapy on COVID-19 patients. Based on the secondary data, we build a prediction model to evaluate and predict the trends in the clinical characteristics and laboratory findings for critically ill patients infected with COVID-19 and treated with convalescent plasma. Here, we use a combined prediction model utilizing three models; the grey prediction model (GM (1, 1)), the residual prediction model (residual GM (1, 1)), and a back propagation artificial neural network (BP-ANN) based residual sign prediction model. Also, a validation of the results of the study has been presented at two levels. On analysis of the results from the prediction model, it is observed that the convalescent plasma therapy can show progressive signs on COVID-19 infected patients. Health practitioners can understand, analyze, and predict the potential risks of convalescent plasma therapy based on the proposed model.

Suggested Citation

  • R. Rajesh, 2025. "A Grey Combined Prediction Model for Medical Treatment Risk Analysis during Pandemics," Information Systems Frontiers, Springer, vol. 27(1), pages 171-195, February.
  • Handle: RePEc:spr:infosf:v:27:y:2025:i:1:d:10.1007_s10796-024-10551-5
    DOI: 10.1007/s10796-024-10551-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10796-024-10551-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10796-024-10551-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Francesco Piccialli & Vincenzo Schiano Cola & Fabio Giampaolo & Salvatore Cuomo, 2021. "The Role of Artificial Intelligence in Fighting the COVID-19 Pandemic," Information Systems Frontiers, Springer, vol. 23(6), pages 1467-1497, December.
    2. Pär J Ågerfalk & Kieran Conboy & Michael D Myers, 2020. "Information systems in the age of pandemics: COVID-19 and beyond," European Journal of Information Systems, Taylor & Francis Journals, vol. 29(3), pages 203-207, May.
    3. Gong, Hong-Fei & Chen, Zhong-Sheng & Zhu, Qun-Xiong & He, Yan-Lin, 2017. "A Monte Carlo and PSO based virtual sample generation method for enhancing the energy prediction and energy optimization on small data problem: An empirical study of petrochemical industries," Applied Energy, Elsevier, vol. 197(C), pages 405-415.
    4. He, Yan-Lin & Wang, Ping-Jiang & Zhang, Ming-Qing & Zhu, Qun-Xiong & Xu, Yuan, 2018. "A novel and effective nonlinear interpolation virtual sample generation method for enhancing energy prediction and analysis on small data problem: A case study of Ethylene industry," Energy, Elsevier, vol. 147(C), pages 418-427.
    5. Prabh Deep Singh & Rajbir Kaur & Kiran Deep Singh & Gaurav Dhiman, 2021. "A Novel Ensemble-based Classifier for Detecting the COVID-19 Disease for Infected Patients," Information Systems Frontiers, Springer, vol. 23(6), pages 1385-1401, December.
    6. Longling Zhang & Bochen Shen & Ahmed Barnawi & Shan Xi & Neeraj Kumar & Yi Wu, 2021. "FedDPGAN: Federated Differentially Private Generative Adversarial Networks Framework for the Detection of COVID-19 Pneumonia," Information Systems Frontiers, Springer, vol. 23(6), pages 1403-1415, December.
    7. Andrew Urbaczewski & Young Jin Lee, 2020. "Information Technology and the pandemic: a preliminary multinational analysis of the impact of mobile tracking technology on the COVID-19 contagion control," European Journal of Information Systems, Taylor & Francis Journals, vol. 29(4), pages 405-414, July.
    8. Meng Zhou & Bo Zeng & Wenhao Zhou, 2020. "A Hybrid Grey Prediction Model for Small Oscillation Sequence Based on Information Decomposition," Complexity, Hindawi, vol. 2020, pages 1-13, January.
    9. Jyoti Choudrie & Shruti Patil & Ketan Kotecha & Nikhil Matta & Ilias Pappas, 2021. "Applying and Understanding an Advanced, Novel Deep Learning Approach: A Covid 19, Text Based, Emotions Analysis Study," Information Systems Frontiers, Springer, vol. 23(6), pages 1431-1465, December.
    10. Luo, Xilin & Duan, Huiming & Xu, Kai, 2021. "A novel grey model based on traditional Richards model and its application in COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    11. He, Wu & Zhang, Zuopeng (Justin) & Li, Wenzhuo, 2021. "Information technology solutions, challenges, and suggestions for tackling the COVID-19 pandemic," International Journal of Information Management, Elsevier, vol. 57(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tomas Krilavičius & Lucio Tommaso De Paolis & Valerio De Luca & Josef Spjut, 2025. "eXtended Reality and Artificial Intelligence in Medicine and Rehabilitation," Information Systems Frontiers, Springer, vol. 27(1), pages 1-6, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Victor Chang & Carole Goble & Muthu Ramachandran & Lazarus Jegatha Deborah & Reinhold Behringer, 2021. "Editorial on Machine Learning, AI and Big Data Methods and Findings for COVID-19," Information Systems Frontiers, Springer, vol. 23(6), pages 1363-1367, December.
    2. Zhang, Xiao-Han & Zhu, Qun-Xiong & He, Yan-Lin & Xu, Yuan, 2018. "Energy modeling using an effective latent variable based functional link learning machine," Energy, Elsevier, vol. 162(C), pages 883-891.
    3. Maayan Nakash & Dan Bouhnik, 2023. "The effects of COVID‐19 on information management in remote and hybrid work environments," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 74(9), pages 1067-1080, September.
    4. Zhang, Xiao-Han & Zhu, Qun-Xiong & He, Yan-Lin & Xu, Yuan, 2018. "A novel robust ensemble model integrated extreme learning machine with multi-activation functions for energy modeling and analysis: Application to petrochemical industry," Energy, Elsevier, vol. 162(C), pages 593-602.
    5. Xu, Yuan & Zhang, Mingqing & Ye, Liangliang & Zhu, Qunxiong & Geng, Zhiqiang & He, Yan-Lin & Han, Yongming, 2018. "A novel prediction intervals method integrating an error & self-feedback extreme learning machine with particle swarm optimization for energy consumption robust prediction," Energy, Elsevier, vol. 164(C), pages 137-146.
    6. Hwang, Eunju, 2022. "Prediction intervals of the COVID-19 cases by HAR models with growth rates and vaccination rates in top eight affected countries: Bootstrap improvement," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    7. Zhiguo Wang & Lufei Huang & Cici Xiao He, 2021. "A multi-objective and multi-period optimization model for urban healthcare waste’s reverse logistics network design," Journal of Combinatorial Optimization, Springer, vol. 42(4), pages 785-812, November.
    8. Mohamed Saeudy & Ali Meftah Gerged & Khaldoon Albitar, 2022. "Accounting Perspectives on The Business Value of Big Data During and Beyond The COVID-19 Pandemic," Journal of Accounting and Management Information Systems, Faculty of Accounting and Management Information Systems, The Bucharest University of Economic Studies, vol. 21(2), pages 174-199, June.
    9. Nika Meyer (née Mozafari) & Melanie Schwede & Maik Hammerschmidt & Welf Hermann Weiger, 2022. "Users taking the blame? How service failure, recovery, and robot design affect user attributions and retention," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(4), pages 2491-2505, December.
    10. Ortiz-Barrios, Miguel & Arias-Fonseca, Sebastián & Ishizaka, Alessio & Barbati, Maria & Avendaño-Collante, Betty & Navarro-Jiménez, Eduardo, 2023. "Artificial intelligence and discrete-event simulation for capacity management of intensive care units during the Covid-19 pandemic: A case study," Journal of Business Research, Elsevier, vol. 160(C).
    11. Leonardo Banh & Gero Strobel, 2023. "Generative artificial intelligence," Electronic Markets, Springer;IIM University of St. Gallen, vol. 33(1), pages 1-17, December.
    12. Gloria Berenguer-Contri & Irene Gil-Saura & María-Eugenia Ruiz-Molina & Roberto Gil & Israel Juma-Michilena, 2024. "How to generate economic satisfaction in b2b contexts? The role of value co-creation and relationship quality," Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 51(1), pages 189-209, March.
    13. Sultana, U. & Khairuddin, Azhar B. & Sultana, Beenish & Rasheed, Nadia & Qazi, Sajid Hussain & Malik, Nimra Riaz, 2018. "Placement and sizing of multiple distributed generation and battery swapping stations using grasshopper optimizer algorithm," Energy, Elsevier, vol. 165(PA), pages 408-421.
    14. Song, Wanqing & Cattani, Carlo & Chi, Chi-Hung, 2020. "Multifractional Brownian motion and quantum-behaved particle swarm optimization for short term power load forecasting: An integrated approach," Energy, Elsevier, vol. 194(C).
    15. Manu Sharma & Sudhanshu Joshi & Sunil Luthra & Anil Kumar, 2024. "Impact of Digital Assistant Attributes on Millennials’ Purchasing Intentions: A Multi-Group Analysis using PLS-SEM, Artificial Neural Network and fsQCA," Information Systems Frontiers, Springer, vol. 26(3), pages 943-966, June.
    16. Xuanning Song & Bo Wang & Pei-Chun Lin & Guangyu Ge & Ran Yuan & Junzo Watada, 2024. "Scenario-Based Distributionally Robust Unit Commitment Optimization Involving Cooperative Interaction with Robots," Information Systems Frontiers, Springer, vol. 26(1), pages 9-23, February.
    17. He, Yan-Lin & Wang, Ping-Jiang & Zhang, Ming-Qing & Zhu, Qun-Xiong & Xu, Yuan, 2018. "A novel and effective nonlinear interpolation virtual sample generation method for enhancing energy prediction and analysis on small data problem: A case study of Ethylene industry," Energy, Elsevier, vol. 147(C), pages 418-427.
    18. Fei-Yu Zhou & Ning-Jing Tao & Yu-Rong Zhang & Wei-Bin Yuan, 2023. "Prediction of Chloride Diffusion Coefficient in Concrete Based on Machine Learning and Virtual Sample Algorithm," Sustainability, MDPI, vol. 15(24), pages 1-17, December.
    19. Mochen Liao & Kai Lan & Yuan Yao, 2022. "Sustainability implications of artificial intelligence in the chemical industry: A conceptual framework," Journal of Industrial Ecology, Yale University, vol. 26(1), pages 164-182, February.
    20. Zeng, Zhiqiang & Hong, Mengna & Li, Jigeng & Man, Yi & Liu, Huanbin & Li, Zeeman & Zhang, Huanhuan, 2018. "Integrating process optimization with energy-efficiency scheduling to save energy for paper mills," Applied Energy, Elsevier, vol. 225(C), pages 542-558.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:infosf:v:27:y:2025:i:1:d:10.1007_s10796-024-10551-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.