ANN-LSTM-A Water Consumption Prediction Based on Attention Mechanism Enhancement
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Lyu, Yizheng & Gao, Hanbo & Yan, Kun & Liu, Yingjie & Tian, Jinping & Chen, Lyujun & Wan, Mei, 2022. "Carbon peaking strategies for industrial parks: Model development and applications in China," Applied Energy, Elsevier, vol. 322(C).
- Singh, Sanjeet & Bansal, Pooja & Hosen, Mosharrof & Bansal, Sanjeev K., 2023. "Forecasting annual natural gas consumption in USA: Application of machine learning techniques- ANN and SVM," Resources Policy, Elsevier, vol. 80(C).
- Fazlipour, Zahra & Mashhour, Elaheh & Joorabian, Mahmood, 2022. "A deep model for short-term load forecasting applying a stacked autoencoder based on LSTM supported by a multi-stage attention mechanism," Applied Energy, Elsevier, vol. 327(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhang, Yagang & Wang, Hui & Wang, Jingchao & Cheng, Xiaodan & Wang, Tong & Zhao, Zheng, 2024. "Ensemble optimization approach based on hybrid mode decomposition and intelligent technology for wind power prediction system," Energy, Elsevier, vol. 292(C).
- Xingyun Yan & Lingyu Wang & Mingzhu Fang & Jie Hu, 2022. "How Can Industrial Parks Achieve Carbon Neutrality? Literature Review and Research Prospect Based on the CiteSpace Knowledge Map," Sustainability, MDPI, vol. 15(1), pages 1-29, December.
- Yan, Kun & Gao, Hanbo & Liu, Rui & Lyu, Yizheng & Wan, Mei & Tian, Jinping & Chen, Lyujun, 2024. "Review on low-carbon development in Chinese industrial parks driven by bioeconomy strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
- Gomez, William & Wang, Fu-Kwun & Lo, Shih-Che, 2024. "A hybrid approach based machine learning models in electricity markets," Energy, Elsevier, vol. 289(C).
- Wei, Nan & Yin, Chuang & Yin, Lihua & Tan, Jingyi & Liu, Jinyuan & Wang, Shouxi & Qiao, Weibiao & Zeng, Fanhua, 2024. "Short-term load forecasting based on WM algorithm and transfer learning model," Applied Energy, Elsevier, vol. 353(PA).
- Yousaf Raza, Muhammad & Lin, Boqiang, 2023. "Development trend of Pakistan's natural gas consumption: A sectorial decomposition analysis," Energy, Elsevier, vol. 278(PA).
- Zhang, Shulei & Jia, Runda & Pan, Hengxin & Cao, Yankai, 2023. "A safe reinforcement learning-based charging strategy for electric vehicles in residential microgrid," Applied Energy, Elsevier, vol. 348(C).
- Zhao, Geya & Xue, Minggao & Cheng, Li, 2023. "A new hybrid model for multi-step WTI futures price forecasting based on self-attention mechanism and spatial–temporal graph neural network," Resources Policy, Elsevier, vol. 85(PB).
- Zhou, Guangzhao & Guo, Zanquan & Sun, Simin & Jin, Qingsheng, 2023. "A CNN-BiGRU-AM neural network for AI applications in shale oil production prediction," Applied Energy, Elsevier, vol. 344(C).
- Hou, Hui & Ge, Xiangdi & Yan, Yulin & Lu, Yanchao & Zhang, Ji & Dong, Zhao Yang, 2024. "An integrated energy system “green-carbon” offset mechanism and optimization method with Stackelberg game," Energy, Elsevier, vol. 294(C).
- Wang, Jia & Wang, Xinyi & Wang, Xu, 2024. "International oil shocks and the volatility forecasting of Chinese stock market based on machine learning combination models," The North American Journal of Economics and Finance, Elsevier, vol. 70(C).
- Li, Xiaobin & Sengupta, Tuhin & Si Mohammed, Kamel & Jamaani, Fouad, 2023. "Forecasting the lithium mineral resources prices in China: Evidence with Facebook Prophet (Fb-P) and Artificial Neural Networks (ANN) methods," Resources Policy, Elsevier, vol. 82(C).
- Zhuang, Dian & Gan, Vincent J.L. & Duygu Tekler, Zeynep & Chong, Adrian & Tian, Shuai & Shi, Xing, 2023. "Data-driven predictive control for smart HVAC system in IoT-integrated buildings with time-series forecasting and reinforcement learning," Applied Energy, Elsevier, vol. 338(C).
- Donghuan Han & Wei Xiong & Tongwen Jiang & Shusheng Gao & Huaxun Liu & Liyou Ye & Wenqing Zhu & Weiguo An, 2023. "Investigation of the Water-Invasion Gas Efficiency in the Kela-2 Gas Field Using Multiple Experiments," Energies, MDPI, vol. 16(20), pages 1-22, October.
- Xu, Jiuping & Tian, Yalou & Wang, Fengjuan & Yang, Guocan & Zhao, Chuandang, 2024. "Resilience-economy-environment equilibrium based configuration interaction approach towards distributed energy system in energy intensive industry parks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
- Kaiyan Wang & Haodong Du & Jiao Wang & Rong Jia & Zhenyu Zong, 2023. "An Ensemble Deep Learning Model for Provincial Load Forecasting Based on Reduced Dimensional Clustering and Decomposition Strategies," Mathematics, MDPI, vol. 11(12), pages 1-20, June.
- Merve Kayacı Çodur, 2023. "Ensemble Machine Learning Approaches for Prediction of Türkiye’s Energy Demand," Energies, MDPI, vol. 17(1), pages 1-25, December.
- Yingwen Ji & Zhiying Shao & Ruifang Wang, 2024. "Does Industrial Symbiosis Improve Carbon Emission Efficiency? Evidence from Chinese National Demonstration Eco-Industrial Parks," Sustainability, MDPI, vol. 16(2), pages 1-22, January.
- Diana M Nova Díaz & Aritz Adin & Eduardo Sánchez Iriso, 2024. "QALYs in adults with cerebral palsy: Mapping from the San Martin Scale onto the EQ-5D-5L instrument," Working Papers 2024-07, FEDEA.
- Zhu Li & Jianhe Ding & Tianqi Tao & Shulian Wang & Kewu Pi & Wen Xiong, 2024. "Novel Evaluation Method for Cleaner Production Audit in Industrial Parks: Case of a Park in Central China," Sustainability, MDPI, vol. 16(6), pages 1-18, March.
More about this item
Keywords
water consumption prediction; artificial neural network (ANN); long short-term memory (LSTM); attention mechanism (AM);All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:1102-:d:1345730. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.