IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v199y2024ics1364032124002648.html
   My bibliography  Save this article

Review on low-carbon development in Chinese industrial parks driven by bioeconomy strategies

Author

Listed:
  • Yan, Kun
  • Gao, Hanbo
  • Liu, Rui
  • Lyu, Yizheng
  • Wan, Mei
  • Tian, Jinping
  • Chen, Lyujun

Abstract

Given the importance of decarbonizing industrial parks to low-carbon transformation of industrial sectors, this study aims to unveil the dynamic evolution and progress of low-carbon development in such parks through descriptive, bibliometric, and manifest content analysis. The review goes in two parallel ways: the pros and cons of diverse carbon emission accounting methods and carbon mitigation measures targeting industrial parks, and the three main-stream national policy innovations during the past four years. State-of-the-art scientific research and policy practices have been reviewed to panoramically depict the low-carbon transformation of Chinese industrial parks and distinguish their future bioeconomy pathways. The key findings include: (1) Despite large-scale explorations of carbon accounting for parks, the consistent boundaries of their physical systems and emission inventories must be resolved. (2) Carbon reduction actions are mainly concentrated on unit-level including energy and industrial infrastructure, but the decarbonization of system-level such as multisectoral collaborative systems requires more exploration. (3) Government policies are important for low-carbon development in industrial parks concerning efficiency improvement, synergy of pollution reduction and carbon mitigation, circular economy, performance assessment, structural upgrading, and industrialization–urbanization integration. (4) The bioeconomy must be innovated from both perspectives and the effective combination of unit-level processes (highlighting the application of biobased energy, materials, and equipment) and system-level processes (emphasizing biomimetic industries, biorefinery solutions, and symbiotic ecosystems). This unit–system integrated model is oriented to further bioeconomy both in Chinese industrial parks and similar industrial clusters in other developing countries.

Suggested Citation

  • Yan, Kun & Gao, Hanbo & Liu, Rui & Lyu, Yizheng & Wan, Mei & Tian, Jinping & Chen, Lyujun, 2024. "Review on low-carbon development in Chinese industrial parks driven by bioeconomy strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
  • Handle: RePEc:eee:rensus:v:199:y:2024:i:c:s1364032124002648
    DOI: 10.1016/j.rser.2024.114541
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124002648
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.114541?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gu, Haifei & Li, Yang & Yu, Jie & Wu, Chen & Song, Tianli & Xu, Jinzhou, 2020. "Bi-level optimal low-carbon economic dispatch for an industrial park with consideration of multi-energy price incentives," Applied Energy, Elsevier, vol. 262(C).
    2. Dong, Huijuan & Ohnishi, Satoshi & Fujita, Tsuyoshi & Geng, Yong & Fujii, Minoru & Dong, Liang, 2014. "Achieving carbon emission reduction through industrial & urban symbiosis: A case of Kawasaki," Energy, Elsevier, vol. 64(C), pages 277-286.
    3. Lyu, Yizheng & Gao, Hanbo & Yan, Kun & Liu, Yingjie & Tian, Jinping & Chen, Lyujun & Wan, Mei, 2022. "Carbon peaking strategies for industrial parks: Model development and applications in China," Applied Energy, Elsevier, vol. 322(C).
    4. Kosugi, Takanobu & Tokimatsu, Koji & Zhou, Weisheng, 2005. "An economic analysis of a clean-development mechanism project: a case introducing a natural gas-fired combined heat-and-power facility in a Chinese industrial area," Applied Energy, Elsevier, vol. 80(2), pages 197-212, February.
    5. Chaomei Chen, 2006. "CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 57(3), pages 359-377, February.
    6. Liu, Zhe & Adams, Michelle & Cote, Raymond P. & Geng, Yong & Ren, Jingzheng & Chen, Qinghua & Liu, Weili & Zhu, Xuesong, 2018. "Co-benefits accounting for the implementation of eco-industrial development strategies in the scale of industrial park based on emergy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1522-1529.
    7. Dong, Huijuan & Geng, Yong & Xi, Fengming & Fujita, Tsuyoshi, 2013. "Carbon footprint evaluation at industrial park level: A hybrid life cycle assessment approach," Energy Policy, Elsevier, vol. 57(C), pages 298-307.
    8. Hyeong†Woo Kim & Satoshi Ohnishi & Minoru Fujii & Tsuyoshi Fujita & Hung†Suck Park, 2018. "Evaluation and Allocation of Greenhouse Gas Reductions in Industrial Symbiosis," Journal of Industrial Ecology, Yale University, vol. 22(2), pages 275-287, April.
    9. Xin Nie & Jianxian Wu & Han Wang & Weijuan Li & Chengdao Huang & Lihua Li, 2022. "Contributing to carbon peak: Estimating the causal impact of eco‐industrial parks on low‐carbon development in China," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1578-1593, August.
    10. Shu Zhang & Wenying Chen, 2022. "Assessing the energy transition in China towards carbon neutrality with a probabilistic framework," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    11. Gengyu Gao & Min Zhang & Shanshan Wang & Can Wang & RuiQin Zhang, 2022. "Assessment of pollutant emissions reduction potential of energy infrastructure in industrial parks of Henan Province," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 8071-8091, June.
    12. Zhang, Hui & Dong, Liang & Li, Huiquan & Fujita, Tsuyoshi & Ohnishi, Satoshi & Tang, Qing, 2013. "Analysis of low-carbon industrial symbiosis technology for carbon mitigation in a Chinese iron/steel industrial park: A case study with carbon flow analysis," Energy Policy, Elsevier, vol. 61(C), pages 1400-1411.
    13. Wanqiu Hu & Jinping Tian & Xing Li & Lujun Chen, 2020. "Wastewater treatment system optimization with an industrial symbiosis model: A case study of a Chinese eco‐industrial park," Journal of Industrial Ecology, Yale University, vol. 24(6), pages 1338-1351, December.
    14. Zhang, Yan & Zheng, Hongmei & Fath, Brian D., 2015. "Ecological network analysis of an industrial symbiosis system: A case study of the Shandong Lubei eco-industrial park," Ecological Modelling, Elsevier, vol. 306(C), pages 174-184.
    15. Zhu Liu & Dabo Guan & Wei Wei & Steven J. Davis & Philippe Ciais & Jin Bai & Shushi Peng & Qiang Zhang & Klaus Hubacek & Gregg Marland & Robert J. Andres & Douglas Crawford-Brown & Jintai Lin & Hongya, 2015. "Reduced carbon emission estimates from fossil fuel combustion and cement production in China," Nature, Nature, vol. 524(7565), pages 335-338, August.
    16. Michael T. Peddle, 1993. "Planned Industrial and Commercial Developments in the United States: A Review of the History, Literature, and Empirical Evidence Regarding Industrial Parks and Research Parks," Economic Development Quarterly, , vol. 7(1), pages 107-124, February.
    17. Yin Hui Lai & Irene Mei Leng Chew, 2022. "Wastewater System Integration: A Biogenic Waste Biorefinery Eco-Industrial Park," Sustainability, MDPI, vol. 14(24), pages 1-12, December.
    18. Wang, Hongsheng & Lei, Yue & Wang, Haikun & Liu, Miaomiao & Yang, Jie & Bi, Jun, 2013. "Carbon reduction potentials of China's industrial parks: A case study of Suzhou Industry Park," Energy, Elsevier, vol. 55(C), pages 668-675.
    19. Yang Guo & Jinping Tian & Lyujun Chen, 2020. "Managing energy infrastructure to decarbonize industrial parks in China," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    20. Yu, Xiang & Chen, Hongbo & Wang, Bo & Wang, Ran & Shan, Yuli, 2018. "Driving forces of CO2 emissions and mitigation strategies of China’s National low carbon pilot industrial parks," Applied Energy, Elsevier, vol. 212(C), pages 1553-1562.
    21. Xue, Ruoyu & Wang, Shanshan & Long, Wenqi & Gao, Gengyu & Liu, Donghui & Zhang, Ruiqin, 2021. "Uncovering GHG emission characteristics of industrial parks in Central China via emission inventory and cluster analysis," Energy Policy, Elsevier, vol. 151(C).
    22. Liu, Lingxuan & Zhang, Bing & Bi, Jun & Wei, Qi & He, Pan, 2012. "The greenhouse gas mitigation of industrial parks in China: A case study of Suzhou Industrial Park," Energy Policy, Elsevier, vol. 46(C), pages 301-307.
    23. Yang Guo & Denise L. Mauzerall & Yizheng Lyu & Wanqiu Hu & Jinping Tian & Lyujun Chen, 2022. "Benefits of infrastructure symbiosis between coal power and wastewater treatment," Nature Sustainability, Nature, vol. 5(12), pages 1070-1079, December.
    24. Yizheng Lyu & Yang Gao & Hanyun Ye & Yang Liu & Siyu Han & Jinping Tian & Lujun Chen, 2021. "Quantifying the life cycle environmental impacts of water pollution control in a typical chemical industrial park in China," Journal of Industrial Ecology, Yale University, vol. 25(6), pages 1673-1687, December.
    25. Jakob Hildebrandt & Sinéad O'Keeffe & Alberto Bezama & Daniela Thrän, 2019. "Revealing the Environmental Advantages of Industrial Symbiosis in Wood‐Based Bioeconomy Networks: An Assessment From a Life Cycle Perspective," Journal of Industrial Ecology, Yale University, vol. 23(4), pages 808-822, August.
    26. Nicolas Bijon & Tom Wassenaar & Guillaume Junqua & Magali Dechesne, 2022. "Towards a Sustainable Bioeconomy through Industrial Symbiosis: Current Situation and Perspectives," Sustainability, MDPI, vol. 14(3), pages 1-24, January.
    27. Wei Dong & Tao Wang, 2022. "Research on efficiency measurement of information industry chain integration based on multiple structures and its application in carbon management industrial park [Measuring efficiency in the hotel," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 17, pages 421-429.
    28. Chau, C.K. & Leung, T.M. & Ng, W.Y., 2015. "A review on Life Cycle Assessment, Life Cycle Energy Assessment and Life Cycle Carbon Emissions Assessment on buildings," Applied Energy, Elsevier, vol. 143(C), pages 395-413.
    29. Yang Guo & Jinping Tian & Marian Chertow & Lujun Chen, 2018. "Exploring Greenhouse Gas†Mitigation Strategies in Chinese Eco†Industrial Parks by Targeting Energy Infrastructure Stocks," Journal of Industrial Ecology, Yale University, vol. 22(1), pages 106-120, February.
    30. Bi, Jun & Zhang, Rongrong & Wang, Haikun & Liu, Miaomiao & Wu, Yi, 2011. "The benchmarks of carbon emissions and policy implications for China's cities: Case of Nanjing," Energy Policy, Elsevier, vol. 39(9), pages 4785-4794, September.
    31. Thomas Dietz & Jan Börner & Jan Janosch Förster & Joachim Von Braun, 2018. "Governance of the Bioeconomy: A Global Comparative Study of National Bioeconomy Strategies," Sustainability, MDPI, vol. 10(9), pages 1-20, September.
    32. Zheng, Xuyue & Qiu, Yuwei & Zhan, Xiangyan & Zhu, Xingyi & Keirstead, James & Shah, Nilay & Zhao, Yingru, 2017. "Optimization based planning of urban energy systems: Retrofitting a Chinese industrial park as a case-study," Energy, Elsevier, vol. 139(C), pages 31-41.
    33. Jing, Rui & Li, Yubing & Wang, Meng & Chachuat, Benoit & Lin, Jianyi & Guo, Miao, 2021. "Coupling biogeochemical simulation and mathematical optimisation towards eco-industrial energy systems design," Applied Energy, Elsevier, vol. 290(C).
    34. Scott Thacker & Daniel Adshead & Marianne Fay & Stéphane Hallegatte & Mark Harvey & Hendrik Meller & Nicholas O’Regan & Julie Rozenberg & Graham Watkins & Jim W. Hall, 2019. "Infrastructure for sustainable development," Nature Sustainability, Nature, vol. 2(4), pages 324-331, April.
    35. Markus M. Bugge & Teis Hansen & Antje Klitkou, 2016. "What Is the Bioeconomy? A Review of the Literature," Sustainability, MDPI, vol. 8(7), pages 1-22, July.
    36. Feng, Jing-Chun & Yan, Jinyue & Yu, Zhi & Zeng, Xuelan & Xu, Weijia, 2018. "Case study of an industrial park toward zero carbon emission," Applied Energy, Elsevier, vol. 209(C), pages 65-78.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xingyun Yan & Lingyu Wang & Mingzhu Fang & Jie Hu, 2022. "How Can Industrial Parks Achieve Carbon Neutrality? Literature Review and Research Prospect Based on the CiteSpace Knowledge Map," Sustainability, MDPI, vol. 15(1), pages 1-29, December.
    2. Jian Zhang & Jingyang Liu & Li Dong & Qi Qiao, 2022. "CO 2 Emissions Inventory and Its Uncertainty Analysis of China’s Industrial Parks: A Case Study of the Maanshan Economic and Technological Development Area," IJERPH, MDPI, vol. 19(18), pages 1-14, September.
    3. Yu, Xiang & Chen, Hongbo & Wang, Bo & Wang, Ran & Shan, Yuli, 2018. "Driving forces of CO2 emissions and mitigation strategies of China’s National low carbon pilot industrial parks," Applied Energy, Elsevier, vol. 212(C), pages 1553-1562.
    4. Xue, Ruoyu & Wang, Shanshan & Long, Wenqi & Gao, Gengyu & Liu, Donghui & Zhang, Ruiqin, 2021. "Uncovering GHG emission characteristics of industrial parks in Central China via emission inventory and cluster analysis," Energy Policy, Elsevier, vol. 151(C).
    5. Xin Nie & Jianxian Wu & Han Wang & Weijuan Li & Chengdao Huang & Lihua Li, 2022. "Contributing to carbon peak: Estimating the causal impact of eco‐industrial parks on low‐carbon development in China," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1578-1593, August.
    6. Xiaoyu He & Bo Li, 2023. "A Study on the Influence of Green Industrial Policy on Urban Green Development: Based on the Empirical Data of Ecological Industrial Park Pilot Construction," Sustainability, MDPI, vol. 15(13), pages 1-29, June.
    7. Liu, Zhe & Adams, Michelle & Cote, Raymond P. & Geng, Yong & Chen, Qinghua & Liu, Weili & Sun, Lu & Yu, Xiaoman, 2017. "Comprehensive development of industrial symbiosis for the response of greenhouse gases emission mitigation: Challenges and opportunities in China," Energy Policy, Elsevier, vol. 102(C), pages 88-95.
    8. Dong, Huijuan & Ohnishi, Satoshi & Fujita, Tsuyoshi & Geng, Yong & Fujii, Minoru & Dong, Liang, 2014. "Achieving carbon emission reduction through industrial & urban symbiosis: A case of Kawasaki," Energy, Elsevier, vol. 64(C), pages 277-286.
    9. Wei, Xintong & Qiu, Rui & Liang, Yongtu & Liao, Qi & Klemeš, Jiří Jaromír & Xue, Jinjun & Zhang, Haoran, 2022. "Roadmap to carbon emissions neutral industrial parks: Energy, economic and environmental analysis," Energy, Elsevier, vol. 238(PA).
    10. John Rincón-Moreno & Marta Ormazabal & Maria J. Álvarez & Carmen Jaca, 2020. "Shortcomings of Transforming a Local Circular Economy System through Industrial Symbiosis: A Case Study in Spanish SMEs," Sustainability, MDPI, vol. 12(20), pages 1-18, October.
    11. Jing, Yifan & Zhu, Li & Yin, Baoquan & Li, Fangfang, 2023. "Evaluating the PV system expansion potential of existing integrated energy parks: A case study in North China," Applied Energy, Elsevier, vol. 330(PA).
    12. Huang, Beijia & Jiang, Ping & Wang, Shaoping & Zhao, Juan & Wu, Luchao, 2016. "Low carbon innovation and practice in Caohejing High-Tech Industrial Park of Shanghai," International Journal of Production Economics, Elsevier, vol. 181(PB), pages 367-373.
    13. Yingwen Ji & Zhiying Shao & Ruifang Wang, 2024. "Does Industrial Symbiosis Improve Carbon Emission Efficiency? Evidence from Chinese National Demonstration Eco-Industrial Parks," Sustainability, MDPI, vol. 16(2), pages 1-22, January.
    14. Wang, Chen & Engels, Anita & Wang, Zhaohua, 2018. "Overview of research on China's transition to low-carbon development: The role of cities, technologies, industries and the energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1350-1364.
    15. Zhu Li & Jianhe Ding & Tianqi Tao & Shulian Wang & Kewu Pi & Wen Xiong, 2024. "Novel Evaluation Method for Cleaner Production Audit in Industrial Parks: Case of a Park in Central China," Sustainability, MDPI, vol. 16(6), pages 1-18, March.
    16. Huijuan Dong & Zuoxi Liu & Yong Geng & Tsuyoshi Fujita & Minoru Fujii & Lu Sun & Liming Zhang, 2018. "Evaluating Environmental Performance of Industrial Park Development: The Case of Shenyang," Journal of Industrial Ecology, Yale University, vol. 22(6), pages 1402-1412, December.
    17. Anna Lütje & Volker Wohlgemuth, 2020. "Requirements Engineering for an Industrial Symbiosis Tool for Industrial Parks Covering System Analysis, Transformation Simulation and Goal Setting," Administrative Sciences, MDPI, vol. 10(1), pages 1-24, February.
    18. Jianmin You & Xiqiang Chen & Jindao Chen, 2021. "Decomposition of Industrial Electricity Efficiency and Electricity-Saving Potential of Special Economic Zones in China Considering the Heterogeneity of Administrative Hierarchy and Regional Location," Energies, MDPI, vol. 14(17), pages 1-22, September.
    19. Sun, Lu & Li, Hong & Dong, Liang & Fang, Kai & Ren, Jingzheng & Geng, Yong & Fujii, Minoru & Zhang, Wei & Zhang, Ning & Liu, Zhe, 2017. "Eco-benefits assessment on urban industrial symbiosis based on material flows analysis and emergy evaluation approach: A case of Liuzhou city, China," Resources, Conservation & Recycling, Elsevier, vol. 119(C), pages 78-88.
    20. Maximilian Kardung & Kutay Cingiz & Ortwin Costenoble & Roel Delahaye & Wim Heijman & Marko Lovrić & Myrna van Leeuwen & Robert M’Barek & Hans van Meijl & Stephan Piotrowski & Tévécia Ronzon & Johanne, 2021. "Development of the Circular Bioeconomy: Drivers and Indicators," Sustainability, MDPI, vol. 13(1), pages 1-24, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:199:y:2024:i:c:s1364032124002648. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.