IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v61y2013icp1400-1411.html
   My bibliography  Save this article

Analysis of low-carbon industrial symbiosis technology for carbon mitigation in a Chinese iron/steel industrial park: A case study with carbon flow analysis

Author

Listed:
  • Zhang, Hui
  • Dong, Liang
  • Li, Huiquan
  • Fujita, Tsuyoshi
  • Ohnishi, Satoshi
  • Tang, Qing

Abstract

CO2 mitigation strategies in industrial parks are a significant component of the Chinese climate change mitigation policy, and industrial symbiosis can provide specific CO2 mitigation opportunity. Technology is important to support symbiosis, but few studies in China have focused on this topic at the industrial park level. This research presented a case study in a national iron and steel industrial park in China. Focus was given onto carbon mitigation through industrial symbiosis technology using substance flow analysis (SFA). Three typical iron and steel industry technologies, including coke dry quenching (CDQ), combined cycle power plant (CCPP), and CO2 capture by slag carbonization (CCSC) were evaluated with SFA. Technology assessment was further conducted in terms of carbon mitigation potential and unit reduction cost. Compared with the Business as usual (BAU) scenario, application with CDQ, CCPP, and CCSC reduced the net carbon emissions by 56.18, 134.43, and 222.89kg CO2 per ton crude steel inside the industrial parks, respectively, including both direct and indirect emissions. Economic assessment revealed that the unit costs for the three technologies were also high, thereby necessitating national financial support. Finally, relevant policy suggestions and future concerns were proposed and discussed.

Suggested Citation

  • Zhang, Hui & Dong, Liang & Li, Huiquan & Fujita, Tsuyoshi & Ohnishi, Satoshi & Tang, Qing, 2013. "Analysis of low-carbon industrial symbiosis technology for carbon mitigation in a Chinese iron/steel industrial park: A case study with carbon flow analysis," Energy Policy, Elsevier, vol. 61(C), pages 1400-1411.
  • Handle: RePEc:eee:enepol:v:61:y:2013:i:c:p:1400-1411
    DOI: 10.1016/j.enpol.2013.05.066
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421513004187
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kleijn, Rene & Huele, Ruben & van der Voet, Ester, 2000. "Dynamic substance flow analysis: the delaying mechanism of stocks, with the case of PVC in Sweden," Ecological Economics, Elsevier, vol. 32(2), pages 241-254, February.
    2. Kleijn, René & van der Voet, Ester & Udo de Haes, Helias A., 2008. "The need for combining IEA and IE tools: The potential effects of a global ban on PVC on climate change," Ecological Economics, Elsevier, vol. 65(2), pages 266-281, April.
    3. Liu, Hongtao & Xi, Youmin & Guo, Ju'e & Li, Xia, 2010. "Energy embodied in the international trade of China: An energy input-output analysis," Energy Policy, Elsevier, vol. 38(8), pages 3957-3964, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Qianqian & Gu, Yu & Tang, Zhiyong & Wei, Wei & Sun, Yuhan, 2018. "Assessment of low-carbon iron and steel production with CO2 recycling and utilization technologies: A case study in China," Applied Energy, Elsevier, vol. 220(C), pages 192-207.
    2. Yu, Xiang & Chen, Hongbo & Wang, Bo & Wang, Ran & Shan, Yuli, 2018. "Driving forces of CO2 emissions and mitigation strategies of China’s National low carbon pilot industrial parks," Applied Energy, Elsevier, vol. 212(C), pages 1553-1562.
    3. Wang, Chen & Engels, Anita & Wang, Zhaohua, 2018. "Overview of research on China's transition to low-carbon development: The role of cities, technologies, industries and the energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1350-1364.
    4. Dong, Liang & Liang, Hanwei & Zhang, Liguo & Liu, Zhaowen & Gao, Zhiqiu & Hu, Mingming, 2017. "Highlighting regional eco-industrial development: Life cycle benefits of an urban industrial symbiosis and implications in China," Ecological Modelling, Elsevier, vol. 361(C), pages 164-176.
    5. Yang, Wei & Shi, Jinfeng & Qiao, Han & Shao, Yanmin & Wang, Shouyang, 2017. "Regional technical efficiency of Chinese Iron and steel industry based on bootstrap network data envelopment analysis," Socio-Economic Planning Sciences, Elsevier, vol. 57(C), pages 14-24.
    6. Liu, Zhe & Adams, Michelle & Cote, Raymond P. & Geng, Yong & Chen, Qinghua & Liu, Weili & Sun, Lu & Yu, Xiaoman, 2017. "Comprehensive development of industrial symbiosis for the response of greenhouse gases emission mitigation: Challenges and opportunities in China," Energy Policy, Elsevier, vol. 102(C), pages 88-95.
    7. repec:bla:inecol:v:22:y:2018:i:6:p:1402-1412 is not listed on IDEAS
    8. Zhang, Yan & Zheng, Hongmei & Fath, Brian D., 2015. "Ecological network analysis of an industrial symbiosis system: A case study of the Shandong Lubei eco-industrial park," Ecological Modelling, Elsevier, vol. 306(C), pages 174-184.
    9. Wu, Junnian & Pu, Guangying & Guo, Yan & Lv, Jingwen & Shang, Jiangwei, 2018. "Retrospective and prospective assessment of exergy, life cycle carbon emissions, and water footprint for coking network evolution in China," Applied Energy, Elsevier, vol. 218(C), pages 479-493.
    10. Huang, Beijia & Jiang, Ping & Wang, Shaoping & Zhao, Juan & Wu, Luchao, 2016. "Low carbon innovation and practice in Caohejing High-Tech Industrial Park of Shanghai," International Journal of Production Economics, Elsevier, vol. 181(PB), pages 367-373.
    11. Liu, Zhe & Adams, Michelle & Cote, Raymond P. & Geng, Yong & Ren, Jingzheng & Chen, Qinghua & Liu, Weili & Zhu, Xuesong, 2018. "Co-benefits accounting for the implementation of eco-industrial development strategies in the scale of industrial park based on emergy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1522-1529.
    12. Wen, Zongguo & Xu, Jinjing & Lee, Jason C.K. & Ren, Cuiping, 2017. "Symbiotic technology-based potential for energy saving: A case study in China's iron and steel industrial parks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1303-1311.
    13. Dong, Liang & Gu, Fumei & Fujita, Tsuyoshi & Hayashi, Yoshitsugu & Gao, Jie, 2014. "Uncovering opportunity of low-carbon city promotion with industrial system innovation: Case study on industrial symbiosis projects in China," Energy Policy, Elsevier, vol. 65(C), pages 388-397.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:61:y:2013:i:c:p:1400-1411. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/enpol .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.