IDEAS home Printed from https://ideas.repec.org/r/eee/enepol/v61y2013icp1400-1411.html
   My bibliography  Save this item

Analysis of low-carbon industrial symbiosis technology for carbon mitigation in a Chinese iron/steel industrial park: A case study with carbon flow analysis

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Huang, Beijia & Jiang, Ping & Wang, Shaoping & Zhao, Juan & Wu, Luchao, 2016. "Low carbon innovation and practice in Caohejing High-Tech Industrial Park of Shanghai," International Journal of Production Economics, Elsevier, vol. 181(PB), pages 367-373.
  2. Yang, Wei & Shi, Jinfeng & Qiao, Han & Shao, Yanmin & Wang, Shouyang, 2017. "Regional technical efficiency of Chinese Iron and steel industry based on bootstrap network data envelopment analysis," Socio-Economic Planning Sciences, Elsevier, vol. 57(C), pages 14-24.
  3. Zhang, Yan & Zheng, Hongmei & Fath, Brian D., 2015. "Ecological network analysis of an industrial symbiosis system: A case study of the Shandong Lubei eco-industrial park," Ecological Modelling, Elsevier, vol. 306(C), pages 174-184.
  4. Liu, Zhe & Adams, Michelle & Cote, Raymond P. & Geng, Yong & Chen, Qinghua & Liu, Weili & Sun, Lu & Yu, Xiaoman, 2017. "Comprehensive development of industrial symbiosis for the response of greenhouse gases emission mitigation: Challenges and opportunities in China," Energy Policy, Elsevier, vol. 102(C), pages 88-95.
  5. Chen, Qianqian & Gu, Yu & Tang, Zhiyong & Wei, Wei & Sun, Yuhan, 2018. "Assessment of low-carbon iron and steel production with CO2 recycling and utilization technologies: A case study in China," Applied Energy, Elsevier, vol. 220(C), pages 192-207.
  6. Zhengbo Li & Feng Deng & Qiaoqiao Zhu & Li Cao & Yunyan Jiang, 2022. "Do the Chinese Government’s Efforts to Make a Low-Carbon Industrial Transition Hinder or Promote the Economic Development? Evidence from Low-Carbon Industrial Parks Pilot Policy," Sustainability, MDPI, vol. 15(1), pages 1-20, December.
  7. Anna Lütje & Volker Wohlgemuth, 2020. "Requirements Engineering for an Industrial Symbiosis Tool for Industrial Parks Covering System Analysis, Transformation Simulation and Goal Setting," Administrative Sciences, MDPI, vol. 10(1), pages 1-24, February.
  8. Liu, Zhe & Adams, Michelle & Cote, Raymond P. & Geng, Yong & Ren, Jingzheng & Chen, Qinghua & Liu, Weili & Zhu, Xuesong, 2018. "Co-benefits accounting for the implementation of eco-industrial development strategies in the scale of industrial park based on emergy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1522-1529.
  9. Mohammadtaghi Falsafi & Rosanna Fornasiero, 2022. "Explorative Multiple-Case Research on the Scrap-Based Steel Slag Value Chain: Opportunities for Circular Economy," Sustainability, MDPI, vol. 14(4), pages 1-18, February.
  10. Yu, Xiang & Chen, Hongbo & Wang, Bo & Wang, Ran & Shan, Yuli, 2018. "Driving forces of CO2 emissions and mitigation strategies of China’s National low carbon pilot industrial parks," Applied Energy, Elsevier, vol. 212(C), pages 1553-1562.
  11. Wang, Chen & Engels, Anita & Wang, Zhaohua, 2018. "Overview of research on China's transition to low-carbon development: The role of cities, technologies, industries and the energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1350-1364.
  12. Emilia Faria & Armando Caldeira-Pires & Cristiane Barreto, 2021. "Social, Economic, and Institutional Configurations of the Industrial Symbiosis Process: A Comparative Analysis of the Literature and a Proposed Theoretical and Analytical Framework," Sustainability, MDPI, vol. 13(13), pages 1-25, June.
  13. Huijuan Dong & Zuoxi Liu & Yong Geng & Tsuyoshi Fujita & Minoru Fujii & Lu Sun & Liming Zhang, 2018. "Evaluating Environmental Performance of Industrial Park Development: The Case of Shenyang," Journal of Industrial Ecology, Yale University, vol. 22(6), pages 1402-1412, December.
  14. Luca Fraccascia & Vahid Yazdanpanah & Guido Capelleveen & Devrim Murat Yazan, 2021. "Energy-based industrial symbiosis: a literature review for circular energy transition," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 4791-4825, April.
  15. Efrain Boom-Cárcamo & Rita Peñabaena-Niebles, 2022. "Analysis of the Development of Industrial Symbiosis in Emerging and Frontier Market Countries: Barriers and Drivers," Sustainability, MDPI, vol. 14(7), pages 1-32, April.
  16. Wang, Yihan & Wen, Zongguo & Yao, Jianguo & Doh Dinga, Christian, 2020. "Multi-objective optimization of synergic energy conservation and CO2 emission reduction in China's iron and steel industry under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
  17. Ai, Hongshan & Xiong, Shiya & Li, Ke & Jia, Pinrong, 2020. "Electricity price and industrial green productivity: Does the “low-electricity price trap” exist?," Energy, Elsevier, vol. 207(C).
  18. Wen, Zongguo & Xu, Jinjing & Lee, Jason C.K. & Ren, Cuiping, 2017. "Symbiotic technology-based potential for energy saving: A case study in China's iron and steel industrial parks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1303-1311.
  19. Sun, Lu & Li, Hong & Dong, Liang & Fang, Kai & Ren, Jingzheng & Geng, Yong & Fujii, Minoru & Zhang, Wei & Zhang, Ning & Liu, Zhe, 2017. "Eco-benefits assessment on urban industrial symbiosis based on material flows analysis and emergy evaluation approach: A case of Liuzhou city, China," Resources, Conservation & Recycling, Elsevier, vol. 119(C), pages 78-88.
  20. Dong, Liang & Gu, Fumei & Fujita, Tsuyoshi & Hayashi, Yoshitsugu & Gao, Jie, 2014. "Uncovering opportunity of low-carbon city promotion with industrial system innovation: Case study on industrial symbiosis projects in China," Energy Policy, Elsevier, vol. 65(C), pages 388-397.
  21. Zhang, Hanxin & Sun, Wenqiang & Li, Weidong & Ma, Guangyu, 2022. "A carbon flow tracing and carbon accounting method for exploring CO2 emissions of the iron and steel industry: An integrated material–energy–carbon hub," Applied Energy, Elsevier, vol. 309(C).
  22. Wu, Junnian & Pu, Guangying & Guo, Yan & Lv, Jingwen & Shang, Jiangwei, 2018. "Retrospective and prospective assessment of exergy, life cycle carbon emissions, and water footprint for coking network evolution in China," Applied Energy, Elsevier, vol. 218(C), pages 479-493.
  23. Griffiths, Steve & Sovacool, Benjamin K. & Furszyfer Del Rio, Dylan D. & Foley, Aoife M. & Bazilian, Morgan D. & Kim, Jinsoo & Uratani, Joao M., 2023. "Decarbonizing the cement and concrete industry: A systematic review of socio-technical systems, technological innovations, and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
  24. Dong, Liang & Liang, Hanwei & Zhang, Liguo & Liu, Zhaowen & Gao, Zhiqiu & Hu, Mingming, 2017. "Highlighting regional eco-industrial development: Life cycle benefits of an urban industrial symbiosis and implications in China," Ecological Modelling, Elsevier, vol. 361(C), pages 164-176.
  25. Xingyun Yan & Lingyu Wang & Mingzhu Fang & Jie Hu, 2022. "How Can Industrial Parks Achieve Carbon Neutrality? Literature Review and Research Prospect Based on the CiteSpace Knowledge Map," Sustainability, MDPI, vol. 15(1), pages 1-29, December.
  26. Yuli Bian & Liang Dong & Zhaowen Liu & Lezhu Zhang, 2020. "A Sectoral Eco-Efficiency Analysis on Urban-Industrial Symbiosis," Sustainability, MDPI, vol. 12(9), pages 1-19, May.
  27. Anna Lütje & Volker Wohlgemuth, 2020. "Tracking Sustainability Targets with Quantitative Indicator Systems for Performance Measurement of Industrial Symbiosis in Industrial Parks," Administrative Sciences, MDPI, vol. 10(1), pages 1-15, January.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.