IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v361y2017icp164-176.html
   My bibliography  Save this article

Highlighting regional eco-industrial development: Life cycle benefits of an urban industrial symbiosis and implications in China

Author

Listed:
  • Dong, Liang
  • Liang, Hanwei
  • Zhang, Liguo
  • Liu, Zhaowen
  • Gao, Zhiqiu
  • Hu, Mingming

Abstract

Industry is double-edge sword to urban sustainability: on the one hand, it provides employment and GDP economic, one the other hand, brings pollutions to cities. The concept of urban industrial symbiosis offers a smart solution for city to coordinate the relationship among industries and between industry and city. While internationally, this idea has been promoted more than two decades, in China, which is ideal laboratory to test such practices, related research is rather few, especially quantitative studies. With this circumstance, this study conducts a case study to test the urban industrial symbiosis promotion in one typical industrial city named Liuzhou, in southern China, of which heavy industries play an important role. A hybrid evaluation model integrating process based life cycle assessment (LCA) and input-output (IO) model is established to assess the environmental benefits in the whole supply chain. Based on local conditions, innovative urban industrial symbiosis is designed and analyzed. Five new waste/energy synergies named waste plastics recycling, scrap tire recycling, coal flying ash recycling, biomass utilization and carbon capture by slag carbonization are selected for scenarios analysis. We particular focus on the carbon mitigations. Compared with business as usual scenario, planned symbiosis enables to reduce CO2 emissions by 29.66, 557.42 and 520.13kt-CO2/year in power purchase, material consumption and waste disposal stage. Results highlight that urban industrial symbiosis is not only able to green the industries, but also utilize industry contribute to urban development. Finally, policy implications and countermeasures to address the barriers of promoting the urban industrial symbiosis are discussed. Our research would be critical for future sustainable urban planning and shed a light on regional eco-industrial development in China.

Suggested Citation

  • Dong, Liang & Liang, Hanwei & Zhang, Liguo & Liu, Zhaowen & Gao, Zhiqiu & Hu, Mingming, 2017. "Highlighting regional eco-industrial development: Life cycle benefits of an urban industrial symbiosis and implications in China," Ecological Modelling, Elsevier, vol. 361(C), pages 164-176.
  • Handle: RePEc:eee:ecomod:v:361:y:2017:i:c:p:164-176
    DOI: 10.1016/j.ecolmodel.2017.07.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380017302818
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pearce, Joshua M., 2008. "Industrial symbiosis of very large-scale photovoltaic manufacturing," Renewable Energy, Elsevier, vol. 33(5), pages 1101-1108.
    2. Kennedy, Christopher & Steinberger, Julia & Gasson, Barrie & Hansen, Yvonne & Hillman, Timothy & Havránek, Miroslav & Pataki, Diane & Phdungsilp, Aumnad & Ramaswami, Anu & Mendez, Gara Villalba, 2010. "Methodology for inventorying greenhouse gas emissions from global cities," Energy Policy, Elsevier, vol. 38(9), pages 4828-4837, September.
    3. Dong, Huijuan & Geng, Yong & Xi, Fengming & Fujita, Tsuyoshi, 2013. "Carbon footprint evaluation at industrial park level: A hybrid life cycle assessment approach," Energy Policy, Elsevier, vol. 57(C), pages 298-307.
    4. Holub, H. W. & Schnabl, H., 1985. "Qualitative input-output analysis and structural information," Economic Modelling, Elsevier, vol. 2(1), pages 67-73, January.
    5. Zhang, Hui & Dong, Liang & Li, Huiquan & Fujita, Tsuyoshi & Ohnishi, Satoshi & Tang, Qing, 2013. "Analysis of low-carbon industrial symbiosis technology for carbon mitigation in a Chinese iron/steel industrial park: A case study with carbon flow analysis," Energy Policy, Elsevier, vol. 61(C), pages 1400-1411.
    6. Dong, Liang & Gu, Fumei & Fujita, Tsuyoshi & Hayashi, Yoshitsugu & Gao, Jie, 2014. "Uncovering opportunity of low-carbon city promotion with industrial system innovation: Case study on industrial symbiosis projects in China," Energy Policy, Elsevier, vol. 65(C), pages 388-397.
    7. Mi, Zhifu & Zhang, Yunkun & Guan, Dabo & Shan, Yuli & Liu, Zhu & Cong, Ronggang & Yuan, Xiao-Chen & Wei, Yi-Ming, 2016. "Consumption-based emission accounting for Chinese cities," Applied Energy, Elsevier, vol. 184(C), pages 1073-1081.
    8. Tuomas Mattila & Suvi Lehtoranta & Laura Sokka & Matti Melanen & Ari Nissinen, 2012. "Methodological Aspects of Applying Life Cycle Assessment to Industrial Symbioses," Journal of Industrial Ecology, Yale University, vol. 16(1), pages 51-60, February.
    9. Dong, Liang & Fujita, Tsuyoshi & Zhang, Hui & Dai, Ming & Fujii, Minoru & Ohnishi, Satoshi & Geng, Yong & Liu, Zhu, 2013. "Promoting low-carbon city through industrial symbiosis: A case in China by applying HPIMO model," Energy Policy, Elsevier, vol. 61(C), pages 864-873.
    10. Liu, Zhu & Liang, Sai & Geng, Yong & Xue, Bing & Xi, Fengming & Pan, Ying & Zhang, Tianzhu & Fujita, Tsuyoshi, 2012. "Features, trajectories and driving forces for energy-related GHG emissions from Chinese mega cites: The case of Beijing, Tianjin, Shanghai and Chongqing," Energy, Elsevier, vol. 37(1), pages 245-254.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hyeong-Woo Kim & Liang Dong & Seok Jung & Hung-Suck Park, 2018. "The Role of the Eco-Industrial Park (EIP) at the National Economy: An Input-Output Analysis on Korea," Sustainability, MDPI, Open Access Journal, vol. 10(12), pages 1-19, December.
    2. Letizia Tebaldi & Barbara Bigliardi & Eleonora Bottani, 2018. "Sustainable Supply Chain and Innovation: A Review of the Recent Literature," Sustainability, MDPI, Open Access Journal, vol. 10(11), pages 1-29, October.
    3. Wang, Yuanping & Ren, Hong & Dong, Liang & Park, Hung-Suck & Zhang, Yuepeng & Xu, Yanwei, 2019. "Smart solutions shape for sustainable low-carbon future: A review on smart cities and industrial parks in China," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 103-117.
    4. Angela Neves & Radu Godina & Susana G. Azevedo & Carina Pimentel & João C.O. Matias, 2019. "The Potential of Industrial Symbiosis: Case Analysis and Main Drivers and Barriers to Its Implementation," Sustainability, MDPI, Open Access Journal, vol. 11(24), pages 1-68, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:361:y:2017:i:c:p:164-176. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.