IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v39y2011i9p4785-4794.html
   My bibliography  Save this article

The benchmarks of carbon emissions and policy implications for China's cities: Case of Nanjing

Author

Listed:
  • Bi, Jun
  • Zhang, Rongrong
  • Wang, Haikun
  • Liu, Miaomiao
  • Wu, Yi

Abstract

The development of urbanization is accelerating in China, and there are great pressures and opportunities in cities to reduce carbon emissions. An emissions inventory is a basic requirement for analyzing emissions of greenhouse gases (GHGs), their potential reduction and to realize low-carbon development of cities. This study describes a method to establish a GHGs emissions inventory in Chinese cities for 6 emission sources including industrial energy consumption, transportation, household energy consumption, commercial energy consumption, industrial processes and waste. Nanjing city was selected as a representative case to analyze the characteristics of carbon emissions in Chinese cities. The results show that carbon emissions in Nanjing have increased nearly 50% during the last decade. The three largest GHGs contributors were industrial energy consumption, industrial processes and transportation, which contributed 37-44%, 35-40% and 6-10%, respectively, to the total GHGs emissions. Per GDP carbon emissions decreased by 55% from 2002 to 2009, and the per capita and per GDP carbon emissions were comparable or even lower than the world average levels. These results have important policy implications for Chinese cities to control their carbon emissions.

Suggested Citation

  • Bi, Jun & Zhang, Rongrong & Wang, Haikun & Liu, Miaomiao & Wu, Yi, 2011. "The benchmarks of carbon emissions and policy implications for China's cities: Case of Nanjing," Energy Policy, Elsevier, vol. 39(9), pages 4785-4794, September.
  • Handle: RePEc:eee:enepol:v:39:y:2011:i:9:p:4785-4794
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421511005015
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Glaeser, Edward L. & Kahn, Matthew E., 2010. "The greenness of cities: Carbon dioxide emissions and urban development," Journal of Urban Economics, Elsevier, vol. 67(3), pages 404-418, May.
    2. Peter H. Koehn, 2008. "Underneath Kyoto: Emerging Subnational Government Initiatives and Incipient Issue-Bundling Opportunities in China and the United States," Global Environmental Politics, MIT Press, vol. 8(1), pages 53-77, February.
    3. Kennedy, Christopher & Steinberger, Julia & Gasson, Barrie & Hansen, Yvonne & Hillman, Timothy & Havránek, Miroslav & Pataki, Diane & Phdungsilp, Aumnad & Ramaswami, Anu & Mendez, Gara Villalba, 2010. "Methodology for inventorying greenhouse gas emissions from global cities," Energy Policy, Elsevier, vol. 38(9), pages 4828-4837, September.
    4. Sovacool, Benjamin K. & Brown, Marilyn A., 2010. "Twelve metropolitan carbon footprints: A preliminary comparative global assessment," Energy Policy, Elsevier, vol. 38(9), pages 4856-4869, September.
    5. Schulz, Niels B., 2010. "Delving into the carbon footprints of Singapore--comparing direct and indirect greenhouse gas emissions of a small and open economic system," Energy Policy, Elsevier, vol. 38(9), pages 4848-4855, September.
    6. Machado, Giovani & Schaeffer, Roberto & Worrell, Ernst, 2001. "Energy and carbon embodied in the international trade of Brazil: an input-output approach," Ecological Economics, Elsevier, vol. 39(3), pages 409-424, December.
    7. Murthy, N. S. & Panda, Manoj & Parikh, Jyoti, 1997. "Economic development, poverty reduction and carbon emissions in India," Energy Economics, Elsevier, vol. 19(3), pages 327-354, July.
    8. Li, Li & Chen, Changhong & Xie, Shichen & Huang, Cheng & Cheng, Zhen & Wang, Hongli & Wang, Yangjun & Huang, Haiying & Lu, Jun & Dhakal, Shobhakar, 2010. "Energy demand and carbon emissions under different development scenarios for Shanghai, China," Energy Policy, Elsevier, vol. 38(9), pages 4797-4807, September.
    9. He, Kebin & Huo, Hong & Zhang, Qiang & He, Dongquan & An, Feng & Wang, Michael & Walsh, Michael P., 2005. "Oil consumption and CO2 emissions in China's road transport: current status, future trends, and policy implications," Energy Policy, Elsevier, vol. 33(12), pages 1499-1507, August.
    10. Wang, Haikun & Fu, Lixin & Bi, Jun, 2011. "CO2 and pollutant emissions from passenger cars in China," Energy Policy, Elsevier, vol. 39(5), pages 3005-3011, May.
    11. Dhakal, Shobhakar, 2009. "Urban energy use and carbon emissions from cities in China and policy implications," Energy Policy, Elsevier, vol. 37(11), pages 4208-4219, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, J.S. & Chen, G.Q. & Lai, T.M. & Ahmad, B. & Chen, Z.M. & Shao, L. & Ji, Xi, 2013. "Embodied greenhouse gas emission by Macao," Energy Policy, Elsevier, vol. 59(C), pages 819-833.
    2. Kramers, Anna & Wangel, Josefin & Johansson, Stefan & Höjer, Mattias & Finnveden, Göran & Brandt, Nils, 2013. "Towards a comprehensive system of methodological considerations for cities' climate targets," Energy Policy, Elsevier, vol. 62(C), pages 1276-1287.
    3. Ramachandra, T.V. & Aithal, Bharath H. & Sreejith, K., 2015. "GHG footprint of major cities in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 473-495.
    4. Liu, Xue & Ma, Shoufeng & Tian, Junfang & Jia, Ning & Li, Geng, 2015. "A system dynamics approach to scenario analysis for urban passenger transport energy consumption and CO2 emissions: A case study of Beijing," Energy Policy, Elsevier, vol. 85(C), pages 253-270.
    5. Wang, Yafei & Zhao, Hongyan & Li, Liying & Liu, Zhu & Liang, Sai, 2013. "Carbon dioxide emission drivers for a typical metropolis using input–output structural decomposition analysis," Energy Policy, Elsevier, vol. 58(C), pages 312-318.
    6. Pu Lyu & Yongjie Lin & Yuanqing Wang, 2019. "The impacts of household features on commuting carbon emissions: a case study of Xi’an, China," Transportation, Springer, vol. 46(3), pages 841-857, June.
    7. Liu, Xiaoyu & Duan, Zhiyuan & Shan, Yuli & Duan, Haiyan & Wang, Shuo & Song, Junnian & Wang, Xian'en, 2019. "Low-carbon developments in Northeast China: Evidence from cities," Applied Energy, Elsevier, vol. 236(C), pages 1019-1033.
    8. Liu, Zhu & Liang, Sai & Geng, Yong & Xue, Bing & Xi, Fengming & Pan, Ying & Zhang, Tianzhu & Fujita, Tsuyoshi, 2012. "Features, trajectories and driving forces for energy-related GHG emissions from Chinese mega cites: The case of Beijing, Tianjin, Shanghai and Chongqing," Energy, Elsevier, vol. 37(1), pages 245-254.
    9. Cai, Bofeng & Zhang, Lixiao, 2014. "Urban CO2 emissions in China: Spatial boundary and performance comparison," Energy Policy, Elsevier, vol. 66(C), pages 557-567.
    10. Li, J.S. & Chen, G.Q., 2013. "Energy and greenhouse gas emissions review for Macao," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 23-32.
    11. Facchini, Angelo & Kennedy, Chris & Stewart, Iain & Mele, Renata, 2017. "The energy metabolism of megacities," Applied Energy, Elsevier, vol. 186(P2), pages 86-95.
    12. Geng, Yuhuan & Tian, Mingzhong & Zhu, Qiuan & Zhang, Jianjun & Peng, Changhui, 2011. "Quantification of provincial-level carbon emissions from energy consumption in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3658-3668.
    13. Yu, Wei & Pagani, Roberto & Huang, Lei, 2012. "CO2 emission inventories for Chinese cities in highly urbanized areas compared with European cities," Energy Policy, Elsevier, vol. 47(C), pages 298-308.
    14. Zhai, Yijie & Ma, Xiaotian & Gao, Feng & Zhang, Tianzuo & Hong, Jinglan & Zhang, Xu & Yuan, Xueliang & Li, Xiangzhi, 2020. "Is energy the key to pursuing clean air and water at the city level? A case study of Jinan City, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    15. Li, Xue & Lin, Cong & Wang, Yang & Zhao, Lingying & Duan, Na & Wu, Xudong, 2015. "Analysis of rural household energy consumption and renewable energy systems in Zhangziying town of Beijing," Ecological Modelling, Elsevier, vol. 318(C), pages 184-193.
    16. Francesch-Huidobro, Maria, 2016. "Climate change and energy policies in Shanghai: A multilevel governance perspective," Applied Energy, Elsevier, vol. 164(C), pages 45-56.
    17. Guo, Shan & Li, Yilin & Hu, Yunhao & Xue, Fan & Chen, Bin & Chen, Zhan-Ming, 2020. "Embodied energy in service industry in global cities: A study of six Asian cities," Land Use Policy, Elsevier, vol. 91(C).
    18. Kai Yin & Dengsheng Lu & Yichen Tian & Qianjun Zhao & Chao Yuan, 2014. "Evaluation of Carbon and Oxygen Balances in Urban Ecosystems Using Land Use/Land Cover and Statistical Data," Sustainability, MDPI, Open Access Journal, vol. 7(1), pages 1-27, December.
    19. Liu, Zhu & Feng, Kuishuang & Hubacek, Klaus & Liang, Sai & Anadon, Laura Diaz & Zhang, Chao & Guan, Dabo, 2015. "Four system boundaries for carbon accounts," Ecological Modelling, Elsevier, vol. 318(C), pages 118-125.
    20. Xi, Fengming & Geng, Yong & Chen, Xudong & Zhang, Yunsong & Wang, Xinbei & Xue, Bing & Dong, Huijuan & Liu, Zhu & Ren, Wanxia & Fujita, Tsuyoshi & Zhu, Qinghua, 2011. "Contributing to local policy making on GHG emission reduction through inventorying and attribution: A case study of Shenyang, China," Energy Policy, Elsevier, vol. 39(10), pages 5999-6010, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:39:y:2011:i:9:p:4785-4794. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.elsevier.com/locate/enpol .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.