IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v379y2025ics0306261924023274.html
   My bibliography  Save this article

Joint peak power and carbon emission shaving in active distribution systems using carbon emission flow-based deep reinforcement learning

Author

Listed:
  • Lee, Sangyoon
  • Prabawa, Panggah
  • Choi, Dae-Hyun

Abstract

Distribution optimal power flow (D-OPF) with peak load shaving function is crucial for guaranteeing economical and reliable operations of active distribution grids with various distributed energy resources. However, conventional D-OPF methods reduce only the power operation cost without considering carbon emission reduction, which may lead to a slowdown in achieving global carbon neutrality. To resolve this issue, this study proposes a deep reinforcement learning (DRL)-assisted D-OPF framework realizing dual-peak shaving of power and carbon emission for low-carbon active distribution system operations based on the notion of carbon emission flow (CEF). The proposed framework aims to minimize the total power operation costs of substation and gas-turbine (GT) generators. It also aims to reduce the total carbon emission cost via mitigation of peak power and carbon emission in the CEF-based D-OPF framework with both power and carbon emission peak constraints. A key feature of the proposed framework is the adoption of the DRL method for the CEF-based D-OPF problem to determine economical and eco-friendly peaks of power and carbon emission under dynamically changing distribution system operations. Furthermore, a D-OPF optimization-based reward function for the DRL agent is designed to yield no constraint violations for the D-OPF problem during the agent’s training phase. Numerical examples conducted on the IEEE 33-node and IEEE 69-node distribution systems with GT generators, solar photovoltaic systems, and energy storage systems demonstrate that, in contrast with CEF-free and CEF-integrated optimization methods with fixed power and/or carbon emission peaks, the proposed method further reduces the total carbon emission and cost.

Suggested Citation

  • Lee, Sangyoon & Prabawa, Panggah & Choi, Dae-Hyun, 2025. "Joint peak power and carbon emission shaving in active distribution systems using carbon emission flow-based deep reinforcement learning," Applied Energy, Elsevier, vol. 379(C).
  • Handle: RePEc:eee:appene:v:379:y:2025:i:c:s0306261924023274
    DOI: 10.1016/j.apenergy.2024.124944
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924023274
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124944?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:379:y:2025:i:c:s0306261924023274. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.