IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i19p6977-d923075.html
   My bibliography  Save this article

The Status Quo and Future of Hydropower in Slovenia

Author

Listed:
  • Marko Hočevar

    (Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva cesta 6, 1000 Ljubljana, Slovenia)

  • Lovrenc Novak

    (Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva cesta 6, 1000 Ljubljana, Slovenia)

  • Primož Drešar

    (Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva cesta 6, 1000 Ljubljana, Slovenia)

  • Gašper Rak

    (Faculty of Civil and Geodetic Engineering, University of Ljubljana, Jamova cesta 2, 1000 Ljubljana, Slovenia)

Abstract

Slovenia is a Central European country with a long history of hydropower. This paper gives a brief introduction to the current status of hydropower utilization and informs about some selected successful examples of hydropower plant operation. One such example is fish passage and flood risk reduction on the lower reaches of the Sava River at the Brežice hydroelectric power plant, taking into account a complex of morphological, hydrological, hydraulic, and anthropogenic factors. Future development is considered against the background of the National Energy and Climate Plan, which does not envisage any significant expansion in the capacity or function of the hydropower sector. The envisaged capacity increase is from the current 4430 GWh to around 4580 GWh by 2030. It is shown that the current energy storage capacity of Slovenia’s only pumped storage plant will be sufficient to offset the introduction of new non-dispatchable renewable energy sources by 2030. By around 2028, the country will have a need for electrical energy storage from renewable energy sources, reaching a modest total of only 6140 MWh per year. However, by sticking to the unambitious National Energy and Climate Plan, Slovenia will miss the opportunity to remain self-sufficient in electricity generation and significantly increase its share of renewable energy sources. The National Energy and Climate Plan aims to increase the share of renewable energy in total energy generation from 25% in 2020 to 27% by 2030.

Suggested Citation

  • Marko Hočevar & Lovrenc Novak & Primož Drešar & Gašper Rak, 2022. "The Status Quo and Future of Hydropower in Slovenia," Energies, MDPI, vol. 15(19), pages 1-13, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:6977-:d:923075
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/19/6977/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/19/6977/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guittet, Mélanie & Capezzali, Massimiliano & Gaudard, Ludovic & Romerio, Franco & Vuille, François & Avellan, François, 2016. "Study of the drivers and asset management of pumped-storage power plants historical and geographical perspective," Energy, Elsevier, vol. 111(C), pages 560-579.
    2. Pfenninger, Stefan & Staffell, Iain, 2016. "Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data," Energy, Elsevier, vol. 114(C), pages 1251-1265.
    3. Staffell, Iain & Pfenninger, Stefan, 2016. "Using bias-corrected reanalysis to simulate current and future wind power output," Energy, Elsevier, vol. 114(C), pages 1224-1239.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gerkšič, Samo & Vrančić, Damir & Čalič, Dušan & Žerovnik, Gašper & Trkov, Andrej & Kromar, Marjan & Snoj, Luka, 2023. "A perspective of using nuclear power as a dispatchable power source for covering the daily fluctuations of solar power," Energy, Elsevier, vol. 284(C).
    2. Rekha Guchhait & Biswajit Sarkar, 2023. "Increasing Growth of Renewable Energy: A State of Art," Energies, MDPI, vol. 16(6), pages 1-29, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Guibert, Paul & Shirizadeh, Behrang & Quirion, Philippe, 2020. "Variable time-step: A method for improving computational tractability for energy system models with long-term storage," Energy, Elsevier, vol. 213(C).
    2. Lukas Kriechbaum & Philipp Gradl & Romeo Reichenhauser & Thomas Kienberger, 2020. "Modelling Grid Constraints in a Multi-Energy Municipal Energy System Using Cumulative Exergy Consumption Minimisation," Energies, MDPI, vol. 13(15), pages 1-23, July.
    3. Behrang Shirizadeh, Quentin Perrier, and Philippe Quirion, 2022. "How Sensitive are Optimal Fully Renewable Power Systems to Technology Cost Uncertainty?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    4. Omoyele, Olalekan & Hoffmann, Maximilian & Koivisto, Matti & Larrañeta, Miguel & Weinand, Jann Michael & Linßen, Jochen & Stolten, Detlef, 2024. "Increasing the resolution of solar and wind time series for energy system modeling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    5. Liu, Hailiang & Andresen, Gorm Bruun & Greiner, Martin, 2018. "Cost-optimal design of a simplified highly renewable Chinese electricity network," Energy, Elsevier, vol. 147(C), pages 534-546.
    6. Géremi Gilson Dranka & Paula Ferreira, 2020. "Electric Vehicles and Biofuels Synergies in the Brazilian Energy System," Energies, MDPI, vol. 13(17), pages 1-22, August.
    7. Shirizadeh, Behrang & Quirion, Philippe, 2022. "The importance of renewable gas in achieving carbon-neutrality: Insights from an energy system optimization model," Energy, Elsevier, vol. 255(C).
    8. Liu, Hailiang & Brown, Tom & Andresen, Gorm Bruun & Schlachtberger, David P. & Greiner, Martin, 2019. "The role of hydro power, storage and transmission in the decarbonization of the Chinese power system," Applied Energy, Elsevier, vol. 239(C), pages 1308-1321.
    9. Andrés Henao-Muñoz & Andrés Saavedra-Montes & Carlos Ramos-Paja, 2018. "Optimal Power Dispatch of Small-Scale Standalone Microgrid Located in Colombian Territory," Energies, MDPI, vol. 11(7), pages 1-20, July.
    10. Laura Canale & Anna Rita Di Fazio & Mario Russo & Andrea Frattolillo & Marco Dell’Isola, 2021. "An Overview on Functional Integration of Hybrid Renewable Energy Systems in Multi-Energy Buildings," Energies, MDPI, vol. 14(4), pages 1-33, February.
    11. Gorre, Jachin & Ortloff, Felix & van Leeuwen, Charlotte, 2019. "Production costs for synthetic methane in 2030 and 2050 of an optimized Power-to-Gas plant with intermediate hydrogen storage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    12. Shirizadeh, Behrang & Quirion, Philippe, 2021. "Low-carbon options for the French power sector: What role for renewables, nuclear energy and carbon capture and storage?," Energy Economics, Elsevier, vol. 95(C).
    13. Topi Rasku & Juha Kiviluoma, 2018. "A Comparison of Widespread Flexible Residential Electric Heating and Energy Efficiency in a Future Nordic Power System," Energies, MDPI, vol. 12(1), pages 1-27, December.
    14. Dranka, Géremi Gilson & Ferreira, Paula, 2018. "Planning for a renewable future in the Brazilian power system," Energy, Elsevier, vol. 164(C), pages 496-511.
    15. Li, Xudong & Yang, Weijia & Liao, Yiwen & Zhang, Shushu & Zheng, Yang & Zhao, Zhigao & Tang, Maojia & Cheng, Yongguang & Liu, Pan, 2024. "Short-term risk-management for hydro-wind-solar hybrid energy system considering hydropower part-load operating characteristics," Applied Energy, Elsevier, vol. 360(C).
    16. Héctor Marañón-Ledesma & Asgeir Tomasgard, 2019. "Analyzing Demand Response in a Dynamic Capacity Expansion Model for the European Power Market," Energies, MDPI, vol. 12(15), pages 1-24, August.
    17. Bosch, Jonathan & Staffell, Iain & Hawkes, Adam D., 2018. "Temporally explicit and spatially resolved global offshore wind energy potentials," Energy, Elsevier, vol. 163(C), pages 766-781.
    18. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Nybø, Astrid, 2020. "Transitioning remote Arctic settlements to renewable energy systems – A modelling study of Longyearbyen, Svalbard," Applied Energy, Elsevier, vol. 258(C).
    19. Petrelli, Marina & Fioriti, Davide & Berizzi, Alberto & Bovo, Cristian & Poli, Davide, 2021. "A novel multi-objective method with online Pareto pruning for multi-year optimization of rural microgrids," Applied Energy, Elsevier, vol. 299(C).
    20. Gianluigi Migliavacca & Marco Rossi & Dario Siface & Matteo Marzoli & Hakan Ergun & Raúl Rodríguez-Sánchez & Maxime Hanot & Guillaume Leclerq & Nuno Amaro & Aleksandr Egorov & Jawana Gabrielski & Björ, 2021. "The Innovative FlexPlan Grid-Planning Methodology: How Storage and Flexible Resources Could Help in De-Bottlenecking the European System," Energies, MDPI, vol. 14(4), pages 1-28, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:6977-:d:923075. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.