IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v95y2021ics0140988320303443.html
   My bibliography  Save this article

Low-carbon options for the French power sector: What role for renewables, nuclear energy and carbon capture and storage?

Author

Listed:
  • Shirizadeh, Behrang
  • Quirion, Philippe

Abstract

In the wake of the Paris agreement, France has set a target of zero net greenhouse gas emissions by 2050. This target can only be achieved by rapidly decreasing the proportion of fossil fuels and accelerating the deployment of low-carbon technologies. We develop a detailed model of the power sector to investigate the role of different low- and negative-emission technologies in the French electricity mix and we identify the impact of the relative cost of these technologies for various values of the social cost of carbon (SCC).

Suggested Citation

  • Shirizadeh, Behrang & Quirion, Philippe, 2021. "Low-carbon options for the French power sector: What role for renewables, nuclear energy and carbon capture and storage?," Energy Economics, Elsevier, vol. 95(C).
  • Handle: RePEc:eee:eneeco:v:95:y:2021:i:c:s0140988320303443
    DOI: 10.1016/j.eneco.2020.105004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988320303443
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2020.105004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Krakowski, Vincent & Assoumou, Edi & Mazauric, Vincent & Maïzi, Nadia, 2016. "Reprint of Feasible path toward 40–100% renewable energy shares for power supply in France by 2050: A prospective analysis," Applied Energy, Elsevier, vol. 184(C), pages 1529-1550.
    2. Behrang Shirizadeh, Quentin Perrier, and Philippe Quirion, 2022. "How Sensitive are Optimal Fully Renewable Power Systems to Technology Cost Uncertainty?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    3. Marie Petitet, Dominique Finon, and Tanguy Janssen, 2016. "Carbon Price instead of Support Schemes: Wind Power Investments by the Electricity Market," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    4. Daniel L. Sanchez & Daniel M. Kammen, 2016. "A commercialization strategy for carbon-negative energy," Nature Energy, Nature, vol. 1(1), pages 1-4, January.
    5. Brouwer, Anne Sjoerd & van den Broek, Machteld & Zappa, William & Turkenburg, Wim C. & Faaij, André, 2016. "Least-cost options for integrating intermittent renewables in low-carbon power systems," Applied Energy, Elsevier, vol. 161(C), pages 48-74.
    6. Hirth, Lion & Müller, Simon, 2016. "System-friendly wind power," Energy Economics, Elsevier, vol. 56(C), pages 51-63.
    7. Lauret, Philippe & Boland, John & Ridley, Barbara, 2013. "Bayesian statistical analysis applied to solar radiation modelling," Renewable Energy, Elsevier, vol. 49(C), pages 124-127.
    8. Cebulla, F. & Fichter, T., 2017. "Merit order or unit-commitment: How does thermal power plant modeling affect storage demand in energy system models?," Renewable Energy, Elsevier, vol. 105(C), pages 117-132.
    9. Sébastien Annan-Phan and Fabien A. Roques, 2018. "Market Integration and Wind Generation: An Empirical Analysis of the Impact of Wind Generation on Cross-Border Power Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    10. Ryan Wiser & Karen Jenni & Joachim Seel & Erin Baker & Maureen Hand & Eric Lantz & Aaron Smith, 2016. "Expert elicitation survey on future wind energy costs," Nature Energy, Nature, vol. 1(10), pages 1-8, October.
    11. Moraes, L. & Bussar, C. & Stoecker, P. & Jacqué, Kevin & Chang, Mokhi & Sauer, D.U., 2018. "Comparison of long-term wind and photovoltaic power capacity factor datasets with open-license," Applied Energy, Elsevier, vol. 225(C), pages 209-220.
    12. Gautam Gowrisankaran & Stanley S. Reynolds & Mario Samano, 2016. "Intermittency and the Value of Renewable Energy," Journal of Political Economy, University of Chicago Press, vol. 124(4), pages 1187-1234.
    13. Emile Quinet, 2014. "L'évaluation socioéconomique des investissements publics," PSE-Ecole d'économie de Paris (Postprint) halshs-01059484, HAL.
    14. Staffell, Iain & Pfenninger, Stefan, 2016. "Using bias-corrected reanalysis to simulate current and future wind power output," Energy, Elsevier, vol. 114(C), pages 1224-1239.
    15. Nahla A M Hamed, 2017. "Does MIDH Inhibitors is a Promising Therapy?," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 1(2), pages 373-375, July.
    16. Krakowski, Vincent & Assoumou, Edi & Mazauric, Vincent & Maïzi, Nadia, 2016. "Feasible path toward 40–100% renewable energy shares for power supply in France by 2050: A prospective analysis," Applied Energy, Elsevier, vol. 171(C), pages 501-522.
    17. Zerrahn, Alexander & Schill, Wolf-Peter, 2017. "Long-run power storage requirements for high shares of renewables: review and a new model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1518-1534.
    18. Linares, Pedro & Conchado, Adela, 2013. "The economics of new nuclear power plants in liberalized electricity markets," Energy Economics, Elsevier, vol. 40(S1), pages 119-125.
    19. Perrier, Quentin, 2018. "The second French nuclear bet," Energy Economics, Elsevier, vol. 74(C), pages 858-877.
    20. Enevoldsen, Peter & Permien, Finn-Hendrik & Bakhtaoui, Ines & Krauland, Anna-Katharina von & Jacobson, Mark Z. & Xydis, George & Sovacool, Benjamin K. & Valentine, Scott V. & Luecht, Daniel & Oxley, G, 2019. "How much wind power potential does europe have? Examining european wind power potential with an enhanced socio-technical atlas," Energy Policy, Elsevier, vol. 132(C), pages 1092-1100.
    21. Kan, Xiaoming & Hedenus, Fredrik & Reichenberg, Lina, 2020. "The cost of a future low-carbon electricity system without nuclear power – the case of Sweden," Energy, Elsevier, vol. 195(C).
    22. Pfenninger, Stefan & Staffell, Iain, 2016. "Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data," Energy, Elsevier, vol. 114(C), pages 1251-1265.
    23. Emile Quinet, 2014. "L'évaluation socioéconomique des investissements publics," PSE Working Papers halshs-01059484, HAL.
    24. Emile Quinet, 2014. "L'évaluation socioéconomique des investissements publics," Working Papers halshs-01059484, HAL.
    25. Schlachtberger, D.P. & Brown, T. & Schäfer, M. & Schramm, S. & Greiner, M., 2018. "Cost optimal scenarios of a future highly renewable European electricity system: Exploring the influence of weather data, cost parameters and policy constraints," Energy, Elsevier, vol. 163(C), pages 100-114.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zimmermann, Florian & Keles, Dogan, 2023. "State or market: Investments in new nuclear power plants in France and their domestic and cross-border effects," Energy Policy, Elsevier, vol. 173(C).
    2. Clerjon, Arthur & Perdu, Fabien, 2022. "Matching intermittent electricity supply and demand with electricity storage - An optimization based on a time scale analysis," Energy, Elsevier, vol. 241(C).
    3. Shirizadeh, Behrang & Quirion, Philippe, 2022. "Do multi-sector energy system optimization models need hourly temporal resolution? A case study with an investment and dispatch model applied to France," Applied Energy, Elsevier, vol. 305(C).
    4. Luo, Shihua & Hu, Weihao & Liu, Wen & Zhang, Zhenyuan & Bai, Chunguang & Huang, Qi & Chen, Zhe, 2022. "Study on the decarbonization in China's power sector under the background of carbon neutrality by 2060," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    5. Lynch, Arthur & Perez, Yannick & Gabriel, Sophie & Mathonniere, Gilles, 2022. "Nuclear fleet flexibility: Modeling and impacts on power systems with renewable energy," Applied Energy, Elsevier, vol. 314(C).
    6. Shirizadeh, Behrang & Quirion, Philippe, 2022. "The importance of renewable gas in achieving carbon-neutrality: Insights from an energy system optimization model," Energy, Elsevier, vol. 255(C).
    7. Ozan Korkmaz & Bihrat Önöz, 2022. "Modelling the Potential Impacts of Nuclear Energy and Renewables in the Turkish Energy System," Energies, MDPI, vol. 15(4), pages 1-25, February.
    8. Thimet, P.J. & Mavromatidis, G., 2022. "Review of model-based electricity system transition scenarios: An analysis for Switzerland, Germany, France, and Italy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    9. Alexis Tantet & Philippe Drobinski, 2021. "A Minimal System Cost Minimization Model for Variable Renewable Energy Integration: Application to France and Comparison to Mean-Variance Analysis," Energies, MDPI, vol. 14(16), pages 1-38, August.
    10. Zimmermann, Florian & Keles, Dogan, 2022. "State or market: Investments in new nuclear power plants in France and their domestic and cross-border effects," Working Paper Series in Production and Energy 64, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    11. Holz, Franziska & Scherwath, Tim & Crespo del Granado, Pedro & Skar, Christian & Olmos, Luis & Ploussard, Quentin & Ramos, Andrés & Herbst, Andrea, 2021. "A 2050 perspective on the role for carbon capture and storage in the European power system and industry sector," Energy Economics, Elsevier, vol. 104(C).
    12. Shi, Xingping & He, Qing & Lu, Chang & Wang, Tingting & Cui, Shuangshuang & Du, Dongmei, 2023. "Variable load modes and operation characteristics of closed Brayton cycle pumped thermal electricity storage system with liquid-phase storage," Renewable Energy, Elsevier, vol. 203(C), pages 715-730.
    13. Aleksandra Badora & Krzysztof Kud & Marian Woźniak, 2021. "Nuclear Energy Perception and Ecological Attitudes," Energies, MDPI, vol. 14(14), pages 1-18, July.
    14. Lin, Boqiang & Xie, Yongjing, 2022. "Analysis on operational efficiency and its influencing factors of China’s nuclear power plants," Energy, Elsevier, vol. 261(PA).
    15. Alexis Tantet & Philippe Drobinski, 2021. "A Minimal System Cost Minimization Model for Variable Renewable Energy Integration: Application to France and Comparison to Mean-Variance Analysis," Post-Print hal-03350191, HAL.
    16. Handayani, Kamia & Anugrah, Pinto & Goembira, Fadjar & Overland, Indra & Suryadi, Beni & Swandaru, Akbar, 2022. "Moving beyond the NDCs: ASEAN pathways to a net-zero emissions power sector in 2050," Applied Energy, Elsevier, vol. 311(C).
    17. Behrang Shirizadeh & Philippe Quirion, 2023. "Long-term optimization of the hydrogen-electricity nexus in France," Post-Print hal-04347126, HAL.
    18. Henni, Sarah & Schäffer, Michael & Fischer, Peter & Weinhardt, Christof & Staudt, Philipp, 2023. "Bottom-up system modeling of battery storage requirements for integrated renewable energy systems," Applied Energy, Elsevier, vol. 333(C).
    19. Migliavacca, Milena & Patel, Ritesh & Paltrinieri, Andrea & Goodell, John W., 2022. "Mapping impact investing: A bibliometric analysis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 81(C).
    20. Behrang Shirizadeh, 2020. "Carbon-neutral future with sector-coupling; relative role of different mitigation options in energy sector," Working Papers 2020.19, FAERE - French Association of Environmental and Resource Economists.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Behrang Shirizadeh, Quentin Perrier, and Philippe Quirion, 2022. "How Sensitive are Optimal Fully Renewable Power Systems to Technology Cost Uncertainty?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    2. Shirizadeh, Behrang & Quirion, Philippe, 2022. "The importance of renewable gas in achieving carbon-neutrality: Insights from an energy system optimization model," Energy, Elsevier, vol. 255(C).
    3. Behrang Shirizadeh, 2020. "Carbon-neutral future with sector-coupling; relative role of different mitigation options in energy sector," Working Papers 2020.19, FAERE - French Association of Environmental and Resource Economists.
    4. Shirizadeh, Behrang & Quirion, Philippe, 2022. "Do multi-sector energy system optimization models need hourly temporal resolution? A case study with an investment and dispatch model applied to France," Applied Energy, Elsevier, vol. 305(C).
    5. de Guibert, Paul & Shirizadeh, Behrang & Quirion, Philippe, 2020. "Variable time-step: A method for improving computational tractability for energy system models with long-term storage," Energy, Elsevier, vol. 213(C).
    6. Zimmermann, Florian & Keles, Dogan, 2022. "State or market: Investments in new nuclear power plants in France and their domestic and cross-border effects," Working Paper Series in Production and Energy 64, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    7. Behrang Shirizadeh & Philippe Quirion, 2023. "Long-term optimization of the hydrogen-electricity nexus in France," Post-Print hal-04347126, HAL.
    8. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    9. Mauleón, Ignacio, 2019. "Optimizing individual renewable energies roadmaps: Criteria, methods, and end targets," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    10. Alexis Tantet & Marc Stéfanon & Philippe Drobinski & Jordi Badosa & Silvia Concettini & Anna Cretì & Claudia D’Ambrosio & Dimitri Thomopulos & Peter Tankov, 2019. "e 4 clim 1.0: The Energy for a Climate Integrated Model: Description and Application to Italy," Energies, MDPI, vol. 12(22), pages 1-37, November.
    11. Matsuo, Yuhji & Endo, Seiya & Nagatomi, Yu & Shibata, Yoshiaki & Komiyama, Ryoichi & Fujii, Yasumasa, 2020. "Investigating the economics of the power sector under high penetration of variable renewable energies," Applied Energy, Elsevier, vol. 267(C).
    12. Xin-Cheng Meng & Yeon-Ho Seong & Min-Kyu Lee, 2021. "Research Characteristics and Development Trend of Global Low-Carbon Power—Based on Bibliometric Analysis of 1983–2021," Energies, MDPI, vol. 14(16), pages 1-20, August.
    13. Kies, Alexander & Schyska, Bruno U. & Bilousova, Mariia & El Sayed, Omar & Jurasz, Jakub & Stoecker, Horst, 2021. "Critical review of renewable generation datasets and their implications for European power system models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    14. Maeder, Mattia & Weiss, Olga & Boulouchos, Konstantinos, 2021. "Assessing the need for flexibility technologies in decarbonized power systems: A new model applied to Central Europe," Applied Energy, Elsevier, vol. 282(PA).
    15. Maruf, Md. Nasimul Islam, 2021. "Open model-based analysis of a 100% renewable and sector-coupled energy system–The case of Germany in 2050," Applied Energy, Elsevier, vol. 288(C).
    16. Quentin Perrier, 2017. "The French Nuclear Bet," Working Papers 2017.18, Fondazione Eni Enrico Mattei.
    17. Liu, Hailiang & Brown, Tom & Andresen, Gorm Bruun & Schlachtberger, David P. & Greiner, Martin, 2019. "The role of hydro power, storage and transmission in the decarbonization of the Chinese power system," Applied Energy, Elsevier, vol. 239(C), pages 1308-1321.
    18. Lenzen, Manfred & McBain, Bonnie & Trainer, Ted & Jütte, Silke & Rey-Lescure, Olivier & Huang, Jing, 2016. "Simulating low-carbon electricity supply for Australia," Applied Energy, Elsevier, vol. 179(C), pages 553-564.
    19. Héctor Marañón-Ledesma & Asgeir Tomasgard, 2019. "Analyzing Demand Response in a Dynamic Capacity Expansion Model for the European Power Market," Energies, MDPI, vol. 12(15), pages 1-24, August.
    20. Brown, T. & Reichenberg, L., 2021. "Decreasing market value of variable renewables can be avoided by policy action," Energy Economics, Elsevier, vol. 100(C).

    More about this item

    Keywords

    Power system modeling; Variable renewables; Negative emissions; Social cost of carbon; Nuclear energy;
    All these keywords.

    JEL classification:

    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • H23 - Public Economics - - Taxation, Subsidies, and Revenue - - - Externalities; Redistributive Effects; Environmental Taxes and Subsidies
    • Q21 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Demand and Supply; Prices

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:95:y:2021:i:c:s0140988320303443. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.