IDEAS home Printed from https://ideas.repec.org/p/fem/femwpa/2017.18.html
   My bibliography  Save this paper

The French Nuclear Bet

Author

Listed:
  • Quentin Perrier

    (CIRED and ENGIE)

Abstract

Following the first oil crisis, France launched the world’s largest ever nuclear energy program, commissioning 58 new reactors. These reactors are now reaching 40 years of age, the end of their technological lifetime. This places France at an energy policy crossroads: should the reactors be retrofitted or should they be decommissioned? The cost-optimal decision depends on several factors going forward, in particular the expected costs of nuclear energy production, electricity demand levels and carbon prices, all of which are subject to significant uncertainty. To deal with these uncertainties, we apply the Robust Decision Making framework to determine which reactors should be retrofitted. We build an investment and dispatch optimization model, calibrated for France. Then we use it to study 27 retrofit strategies for all combinations of uncertain parameters, which amounts to nearly 3,000 runs. Our analysis produces two robust strategies, which involve shutting down between 7 and 14 of the 14 oldest reactors, while extending the lifetime of all remaining reactors. These strategies provide a hedge against the risks of unexpected increases in retrofit costs, low demand and low carbon price. Our robust strategies differ from the official French government scenarios on the timing and number of reactors suggested to be decommissioned. They provide a timely contribution to the current debate on the extension of lifetime of nuclear plants in France.

Suggested Citation

  • Quentin Perrier, 2017. "The French Nuclear Bet," Working Papers 2017.18, Fondazione Eni Enrico Mattei.
  • Handle: RePEc:fem:femwpa:2017.18
    as

    Download full text from publisher

    File URL: http://www.feem.it/userfiles/attach/20173231228164NDL2017-018.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Marie Petitet, Dominique Finon, and Tanguy Janssen, 2016. "Carbon Price instead of Support Schemes: Wind Power Investments by the Electricity Market," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    2. Simoes, Sofia & Zeyringer, Marianne & Mayr, Dieter & Huld, Thomas & Nijs, Wouter & Schmidt, Johannes, 2017. "Impact of different levels of geographical disaggregation of wind and PV electricity generation in large energy system models: A case study for Austria," Renewable Energy, Elsevier, vol. 105(C), pages 183-198.
    3. Oskar Lecuyer & Philippe Quirion, 2016. "Interaction between CO2 emissions trading and renewable energy subsidies under uncertainty: feed-in tariffs as a safety net against over-allocation," Policy Papers 2016.03, FAERE - French Association of Environmental and Resource Economists.
    4. Nahmmacher, Paul & Schmid, Eva & Pahle, Michael & Knopf, Brigitte, 2016. "Strategies against shocks in power systems – An analysis for the case of Europe," Energy Economics, Elsevier, vol. 59(C), pages 455-465.
    5. Grubler, Arnulf, 2010. "The costs of the French nuclear scale-up: A case of negative learning by doing," Energy Policy, Elsevier, vol. 38(9), pages 5174-5188, September.
    6. Lina Escobar Rangel and Francois Leveque, 2015. "Revisiting the Cost Escalation Curse of Nuclear Power: New Lessons from the French Experience," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    7. repec:eee:reensy:v:92:y:2007:i:5:p:609-618 is not listed on IDEAS
    8. Jägemann, Cosima & Fürsch, Michaela & Hagspiel, Simeon & Nagl, Stephan, 2013. "Decarbonizing Europe's power sector by 2050 — Analyzing the economic implications of alternative decarbonization pathways," Energy Economics, Elsevier, vol. 40(C), pages 622-636.
    9. Pfenninger, Stefan & DeCarolis, Joseph & Hirth, Lion & Quoilin, Sylvain & Staffell, Iain, 2017. "The importance of open data and software: Is energy research lagging behind?," Energy Policy, Elsevier, vol. 101(C), pages 211-215.
    10. Linares, Pedro & Conchado, Adela, 2013. "The economics of new nuclear power plants in liberalized electricity markets," Energy Economics, Elsevier, vol. 40(S1), pages 119-125.
    11. Boccard, Nicolas, 2014. "The cost of nuclear electricity: France after Fukushima," Energy Policy, Elsevier, vol. 66(C), pages 450-461.
    12. François Lévêque & Lina Escobar Rangel, 2015. "Revisiting the Cost Escalation Curse of Nuclear Power Generation: New Lessons from the French Experience," Post-Print hal-01260975, HAL.
    13. Robert J. Lempert & David G. Groves & Steven W. Popper & Steve C. Bankes, 2006. "A General, Analytic Method for Generating Robust Strategies and Narrative Scenarios," Management Science, INFORMS, vol. 52(4), pages 514-528, April.
    14. Minh Ha-Duong & V. Journé, 2014. "Calculating nuclear accident probabilities from empirical frequencies," Post-Print hal-01018478, HAL.
    15. Lina Escobar Rangel & François Lévêque, 2014. "How Fukushima Dai-ichi core meltdown changed the probability of nuclear accidents," Post-Print hal-01110974, HAL.
    16. Hirth, Lion, 2016. "The benefits of flexibility: The value of wind energy with hydropower," Applied Energy, Elsevier, vol. 181(C), pages 210-223.
    17. Ueckerdt, Falko & Hirth, Lion & Luderer, Gunnar & Edenhofer, Ottmar, 2013. "System LCOE: What are the costs of variable renewables?," Energy, Elsevier, vol. 63(C), pages 61-75.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Power System; Nuclear Power; Uncertainty; Investment Optimization; Robust Decision Making;

    JEL classification:

    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fem:femwpa:2017.18. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (barbara racah). General contact details of provider: http://edirc.repec.org/data/feemmit.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.