IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v277y2023ics0360544223009519.html
   My bibliography  Save this article

Research on short-term photovoltaic power prediction based on multi-scale similar days and ESN-KELM dual core prediction model

Author

Listed:
  • Li, Naiqing
  • Li, Longhao
  • Zhang, Fan
  • Jiao, Ticao
  • Wang, Shuang
  • Liu, Xuefeng
  • Wu, Xinghua

Abstract

Photovoltaic (PV) power generation has emerged as an essential means of developing and utilizing new energy. Accurate PV power prediction is critical for building a new power system generation and guaranteeing system stability when a high proportion of renewable energy is connected. Therefore, this research proposes a hybrid prediction method based on multi-scale similar days and ESN-KELM dual-kernel prediction to increase the prediction accuracy of PV power generation. First, the multi-scale similar days algorithm is used to determine similar days of the forecast day as the model training data. This operation can reduce the impact of the randomness of PV power output on the model performance. Second, the hidden features of PV power are mined using a fast iterative filter decomposition method. Based on the complexity of the components, the corresponding ESN-KELM dual-kernel prediction models are established. An improved Archimedes optimization approach is used to optimize the ESN-KELM model's parameters. Next, the predicted power is obtained by aggregating the predicted results of each component. Ultimately, the method is validated using historical operational data from PV power plants. The results indicate that the proposed model can achieve well prediction results for various seasons and weather conditions.

Suggested Citation

  • Li, Naiqing & Li, Longhao & Zhang, Fan & Jiao, Ticao & Wang, Shuang & Liu, Xuefeng & Wu, Xinghua, 2023. "Research on short-term photovoltaic power prediction based on multi-scale similar days and ESN-KELM dual core prediction model," Energy, Elsevier, vol. 277(C).
  • Handle: RePEc:eee:energy:v:277:y:2023:i:c:s0360544223009519
    DOI: 10.1016/j.energy.2023.127557
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223009519
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127557?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Das, Utpal Kumar & Tey, Kok Soon & Seyedmahmoudian, Mehdi & Mekhilef, Saad & Idris, Moh Yamani Idna & Van Deventer, Willem & Horan, Bend & Stojcevski, Alex, 2018. "Forecasting of photovoltaic power generation and model optimization: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 912-928.
    2. Heo, Jae & Song, Kwonsik & Han, SangUk & Lee, Dong-Eun, 2021. "Multi-channel convolutional neural network for integration of meteorological and geographical features in solar power forecasting," Applied Energy, Elsevier, vol. 295(C).
    3. Wang, Kejun & Qi, Xiaoxia & Liu, Hongda, 2019. "A comparison of day-ahead photovoltaic power forecasting models based on deep learning neural network," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    4. Sarah Feron & Raúl R. Cordero & Alessandro Damiani & Robert B. Jackson, 2021. "Climate change extremes and photovoltaic power output," Nature Sustainability, Nature, vol. 4(3), pages 270-276, March.
    5. Bonanno, F. & Capizzi, G. & Graditi, G. & Napoli, C. & Tina, G.M., 2012. "A radial basis function neural network based approach for the electrical characteristics estimation of a photovoltaic module," Applied Energy, Elsevier, vol. 97(C), pages 956-961.
    6. Cabaneros, Sheen Mclean & Calautit, John Kaiser & Hughes, Ben, 2020. "Spatial estimation of outdoor NO2 levels in Central London using deep neural networks and a wavelet decomposition technique," Ecological Modelling, Elsevier, vol. 424(C).
    7. Alessandrini, S. & Delle Monache, L. & Sperati, S. & Cervone, G., 2015. "An analog ensemble for short-term probabilistic solar power forecast," Applied Energy, Elsevier, vol. 157(C), pages 95-110.
    8. Korkmaz, Deniz, 2021. "SolarNet: A hybrid reliable model based on convolutional neural network and variational mode decomposition for hourly photovoltaic power forecasting," Applied Energy, Elsevier, vol. 300(C).
    9. Hassan, Muhammed A. & Bailek, Nadjem & Bouchouicha, Kada & Nwokolo, Samuel Chukwujindu, 2021. "Ultra-short-term exogenous forecasting of photovoltaic power production using genetically optimized non-linear auto-regressive recurrent neural networks," Renewable Energy, Elsevier, vol. 171(C), pages 191-209.
    10. Kushwaha, Vishal & Pindoriya, Naran M., 2019. "A SARIMA-RVFL hybrid model assisted by wavelet decomposition for very short-term solar PV power generation forecast," Renewable Energy, Elsevier, vol. 140(C), pages 124-139.
    11. Donghun Lee & Kwanho Kim, 2019. "Recurrent Neural Network-Based Hourly Prediction of Photovoltaic Power Output Using Meteorological Information," Energies, MDPI, vol. 12(2), pages 1-22, January.
    12. Sun, Xianke & Wang, Gaoliang & Xu, Liuyang & Yuan, Honglei & Yousefi, Nasser, 2021. "Optimal estimation of the PEM fuel cells applying deep belief network optimized by improved archimedes optimization algorithm," Energy, Elsevier, vol. 237(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yunzhu Gao & Jun Wang & Lin Guo & Hong Peng, 2024. "Short-Term Photovoltaic Power Prediction Using Nonlinear Spiking Neural P Systems," Sustainability, MDPI, vol. 16(4), pages 1-18, February.
    2. Weihui Xu & Zhaoke Wang & Weishu Wang & Jian Zhao & Miaojia Wang & Qinbao Wang, 2024. "Short-Term Photovoltaic Output Prediction Based on Decomposition and Reconstruction and XGBoost under Two Base Learners," Energies, MDPI, vol. 17(4), pages 1-20, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Korkmaz, Deniz, 2021. "SolarNet: A hybrid reliable model based on convolutional neural network and variational mode decomposition for hourly photovoltaic power forecasting," Applied Energy, Elsevier, vol. 300(C).
    2. Athanasios I. Salamanis & Georgia Xanthopoulou & Napoleon Bezas & Christos Timplalexis & Angelina D. Bintoudi & Lampros Zyglakis & Apostolos C. Tsolakis & Dimosthenis Ioannidis & Dionysios Kehagias & , 2020. "Benchmark Comparison of Analytical, Data-Based and Hybrid Models for Multi-Step Short-Term Photovoltaic Power Generation Forecasting," Energies, MDPI, vol. 13(22), pages 1-31, November.
    3. Wang, Jianzhou & Zhou, Yilin & Li, Zhiwu, 2022. "Hour-ahead photovoltaic generation forecasting method based on machine learning and multi objective optimization algorithm," Applied Energy, Elsevier, vol. 312(C).
    4. du Plessis, A.A. & Strauss, J.M. & Rix, A.J., 2021. "Short-term solar power forecasting: Investigating the ability of deep learning models to capture low-level utility-scale Photovoltaic system behaviour," Applied Energy, Elsevier, vol. 285(C).
    5. Elena Collino & Dario Ronzio, 2021. "Exploitation of a New Short-Term Multimodel Photovoltaic Power Forecasting Method in the Very Short-Term Horizon to Derive a Multi-Time Scale Forecasting System," Energies, MDPI, vol. 14(3), pages 1-30, February.
    6. Xiao, Zenan & Huang, Xiaoqiao & Liu, Jun & Li, Chengli & Tai, Yonghang, 2023. "A novel method based on time series ensemble model for hourly photovoltaic power prediction," Energy, Elsevier, vol. 276(C).
    7. Wang, Xiaoyang & Sun, Yunlin & Luo, Duo & Peng, Jinqing, 2022. "Comparative study of machine learning approaches for predicting short-term photovoltaic power output based on weather type classification," Energy, Elsevier, vol. 240(C).
    8. Fachrizal Aksan & Yang Li & Vishnu Suresh & Przemysław Janik, 2023. "Multistep Forecasting of Power Flow Based on LSTM Autoencoder: A Study Case in Regional Grid Cluster Proposal," Energies, MDPI, vol. 16(13), pages 1-20, June.
    9. Tang, Yugui & Yang, Kuo & Zhang, Shujing & Zhang, Zhen, 2022. "Photovoltaic power forecasting: A hybrid deep learning model incorporating transfer learning strategy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    10. Azizi, Narjes & Yaghoubirad, Maryam & Farajollahi, Meisam & Ahmadi, Abolfzl, 2023. "Deep learning based long-term global solar irradiance and temperature forecasting using time series with multi-step multivariate output," Renewable Energy, Elsevier, vol. 206(C), pages 135-147.
    11. Victor Hugo Wentz & Joylan Nunes Maciel & Jorge Javier Gimenez Ledesma & Oswaldo Hideo Ando Junior, 2022. "Solar Irradiance Forecasting to Short-Term PV Power: Accuracy Comparison of ANN and LSTM Models," Energies, MDPI, vol. 15(7), pages 1-23, March.
    12. Huang, Congzhi & Yang, Mengyuan, 2023. "Memory long and short term time series network for ultra-short-term photovoltaic power forecasting," Energy, Elsevier, vol. 279(C).
    13. Mohamed Trabelsi & Mohamed Massaoudi & Ines Chihi & Lilia Sidhom & Shady S. Refaat & Tingwen Huang & Fakhreddine S. Oueslati, 2022. "An Effective Hybrid Symbolic Regression–Deep Multilayer Perceptron Technique for PV Power Forecasting," Energies, MDPI, vol. 15(23), pages 1-14, November.
    14. Khan, Zulfiqar Ahmad & Hussain, Tanveer & Baik, Sung Wook, 2023. "Dual stream network with attention mechanism for photovoltaic power forecasting," Applied Energy, Elsevier, vol. 338(C).
    15. Moradzadeh, Arash & Moayyed, Hamed & Mohammadi-Ivatloo, Behnam & Vale, Zita & Ramos, Carlos & Ghorbani, Reza, 2023. "A novel cyber-Resilient solar power forecasting model based on secure federated deep learning and data visualization," Renewable Energy, Elsevier, vol. 211(C), pages 697-705.
    16. Kelachukwu J. Iheanetu, 2022. "Solar Photovoltaic Power Forecasting: A Review," Sustainability, MDPI, vol. 14(24), pages 1-31, December.
    17. Xu, Fang Yuan & Tang, Rui Xin & Xu, Si Bin & Fan, Yi Liang & Zhou, Ya & Zhang, Hao Tian, 2021. "Neural network-based photovoltaic generation capacity prediction system with benefit-oriented modification," Energy, Elsevier, vol. 223(C).
    18. Hassan, Muhammed A. & Bailek, Nadjem & Bouchouicha, Kada & Nwokolo, Samuel Chukwujindu, 2021. "Ultra-short-term exogenous forecasting of photovoltaic power production using genetically optimized non-linear auto-regressive recurrent neural networks," Renewable Energy, Elsevier, vol. 171(C), pages 191-209.
    19. Zhen, Hao & Niu, Dongxiao & Wang, Keke & Shi, Yucheng & Ji, Zhengsen & Xu, Xiaomin, 2021. "Photovoltaic power forecasting based on GA improved Bi-LSTM in microgrid without meteorological information," Energy, Elsevier, vol. 231(C).
    20. Chen, Zhicong & Yu, Hui & Luo, Linlu & Wu, Lijun & Zheng, Qiao & Wu, Zhenhui & Cheng, Shuying & Lin, Peijie, 2021. "Rapid and accurate modeling of PV modules based on extreme learning machine and large datasets of I-V curves," Applied Energy, Elsevier, vol. 292(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:277:y:2023:i:c:s0360544223009519. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.