IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v75y2017icp242-263.html
   My bibliography  Save this article

Very short-term photovoltaic power forecasting with cloud modeling: A review

Author

Listed:
  • Barbieri, Florian
  • Rajakaruna, Sumedha
  • Ghosh, Arindam

Abstract

This paper endeavors to provide the reader with an overview of the various tools needed to forecast photovoltaic (PV) power within a very short-term horizon. The study focuses on the specific application of a large scale grid-connected PV farm. Solar resource is largely underexploited worldwide whereas it exceeds by far humans’ energy needs. In the current context of global warming, PV energy could potentially play a major role to substitute fossil fuels within the main grid in the future. Indeed, the number of utility-scale PV farms is currently fast increasing globally, with planned capacities in excess of several hundred megawatts. This makes the cost of PV-generated electricity quickly plummet and reach parity with non-renewable resources. However, like many other renewable energy sources, PV power depends highly on weather conditions. This particularity makes PV energy difficult to dispatch unless a properly sized and controlled energy storage system (ESU) is used. An accurate power forecasting method is then required to ensure power continuity but also to manage the ramp rates of the overall power system. In order to perform these actions, the forecasting timeframe also called horizon must be first defined according to the grid operation that is considered. This leads to define both spatial and temporal resolutions. As a second step, an adequate source of input data must be selected. As a third step, the input data must be processed with statistical methods. Finally, the processed data are fed to a precise PV model. It is found that forecasting the irradiance and the cell temperature are the best approaches to forecast precisely swift PV power fluctuations due to the cloud cover. A combination of several sources of input data like satellite and land-based sky imaging also lead to the best results for very-short term forecasting.

Suggested Citation

  • Barbieri, Florian & Rajakaruna, Sumedha & Ghosh, Arindam, 2017. "Very short-term photovoltaic power forecasting with cloud modeling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 242-263.
  • Handle: RePEc:eee:rensus:v:75:y:2017:i:c:p:242-263
    DOI: 10.1016/j.rser.2016.10.068
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403211630733X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.10.068?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chenni, R. & Makhlouf, M. & Kerbache, T. & Bouzid, A., 2007. "A detailed modeling method for photovoltaic cells," Energy, Elsevier, vol. 32(9), pages 1724-1730.
    2. Dambreville, Romain & Blanc, Philippe & Chanussot, Jocelyn & Boldo, Didier, 2014. "Very short term forecasting of the Global Horizontal Irradiance using a spatio-temporal autoregressive model," Renewable Energy, Elsevier, vol. 72(C), pages 291-300.
    3. Hove, Tawanda, 2000. "A method for predicting long-term average performance of photovoltaic systems," Renewable Energy, Elsevier, vol. 21(2), pages 207-229.
    4. Krauter, Stefan & Ochs, Fabian, 2004. "Integrated solar home system," Renewable Energy, Elsevier, vol. 29(2), pages 153-164.
    5. Diagne, Maimouna & David, Mathieu & Lauret, Philippe & Boland, John & Schmutz, Nicolas, 2013. "Review of solar irradiance forecasting methods and a proposition for small-scale insular grids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 65-76.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Skoplaki, E. & Palyvos, J.A., 2009. "Operating temperature of photovoltaic modules: A survey of pertinent correlations," Renewable Energy, Elsevier, vol. 34(1), pages 23-29.
    2. Rawat, Rahul & Kaushik, S.C. & Lamba, Ravita, 2016. "A review on modeling, design methodology and size optimization of photovoltaic based water pumping, standalone and grid connected system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1506-1519.
    3. Marchesoni-Acland, Franco & Alonso-Suárez, Rodrigo, 2020. "Intra-day solar irradiation forecast using RLS filters and satellite images," Renewable Energy, Elsevier, vol. 161(C), pages 1140-1154.
    4. Alonso-Suárez, R. & David, M. & Branco, V. & Lauret, P., 2020. "Intra-day solar probabilistic forecasts including local short-term variability and satellite information," Renewable Energy, Elsevier, vol. 158(C), pages 554-573.
    5. Ramírez, Andres Felipe & Valencia, Carlos Felipe & Cabrales, Sergio & Ramírez, Carlos G., 2021. "Simulation of photo-voltaic power generation using copula autoregressive models for solar irradiance and air temperature time series," Renewable Energy, Elsevier, vol. 175(C), pages 44-67.
    6. Chao-Rong Chen & Unit Three Kartini, 2017. "k-Nearest Neighbor Neural Network Models for Very Short-Term Global Solar Irradiance Forecasting Based on Meteorological Data," Energies, MDPI, vol. 10(2), pages 1-18, February.
    7. Aguiar, L. Mazorra & Pereira, B. & Lauret, P. & Díaz, F. & David, M., 2016. "Combining solar irradiance measurements, satellite-derived data and a numerical weather prediction model to improve intra-day solar forecasting," Renewable Energy, Elsevier, vol. 97(C), pages 599-610.
    8. Stéphanie Monjoly & Maina André & Rudy Calif & Ted Soubdhan, 2019. "Forecast Horizon and Solar Variability Influences on the Performances of Multiscale Hybrid Forecast Model," Energies, MDPI, vol. 12(12), pages 1-20, June.
    9. Ayompe, L.M. & Duffy, A. & McCormack, S.J. & Conlon, M., 2010. "Validated real-time energy models for small-scale grid-connected PV-systems," Energy, Elsevier, vol. 35(10), pages 4086-4091.
    10. Gianfranco Chicco & Valeria Cocina & Paolo Di Leo & Filippo Spertino & Alessandro Massi Pavan, 2015. "Error Assessment of Solar Irradiance Forecasts and AC Power from Energy Conversion Model in Grid-Connected Photovoltaic Systems," Energies, MDPI, vol. 9(1), pages 1-27, December.
    11. Lan, Hai & Yin, He & Hong, Ying-Yi & Wen, Shuli & Yu, David C. & Cheng, Peng, 2018. "Day-ahead spatio-temporal forecasting of solar irradiation along a navigation route," Applied Energy, Elsevier, vol. 211(C), pages 15-27.
    12. Savvakis, Nikolaos & Tsoutsos, Theocharis, 2015. "Performance assessment of a thin film photovoltaic system under actual Mediterranean climate conditions in the island of Crete," Energy, Elsevier, vol. 90(P2), pages 1435-1455.
    13. Elena Collino & Dario Ronzio, 2021. "Exploitation of a New Short-Term Multimodel Photovoltaic Power Forecasting Method in the Very Short-Term Horizon to Derive a Multi-Time Scale Forecasting System," Energies, MDPI, vol. 14(3), pages 1-30, February.
    14. Rehman, Shafiqur & El-Amin, Ibrahim, 2012. "Performance evaluation of an off-grid photovoltaic system in Saudi Arabia," Energy, Elsevier, vol. 46(1), pages 451-458.
    15. Voyant, Cyril & Motte, Fabrice & Notton, Gilles & Fouilloy, Alexis & Nivet, Marie-Laure & Duchaud, Jean-Laurent, 2018. "Prediction intervals for global solar irradiation forecasting using regression trees methods," Renewable Energy, Elsevier, vol. 126(C), pages 332-340.
    16. Boland, John, 2015. "Spatial-temporal forecasting of solar radiation," Renewable Energy, Elsevier, vol. 75(C), pages 607-616.
    17. Javier Borquez & Hector Chavez & Karina A. Barbosa & Marcela Jamett & Rodrigo Acuna, 2020. "A Simple Distribution Energy Tariff under the Penetration of DG," Energies, MDPI, vol. 13(8), pages 1-17, April.
    18. Katsaounis, Th. & Kotsovos, K. & Gereige, I. & Basaheeh, A. & Abdullah, M. & Khayat, A. & Al-Habshi, E. & Al-Saggaf, A. & Tzavaras, A.E., 2019. "Performance assessment of bifacial c-Si PV modules through device simulations and outdoor measurements," Renewable Energy, Elsevier, vol. 143(C), pages 1285-1298.
    19. Wang, Zhenyu & Zhang, Yunpeng & Li, Guorong & Zhang, Jinlong & Zhou, Hai & Wu, Ji, 2024. "A novel solar irradiance forecasting method based on multi-physical process of atmosphere optics and LSTM-BP model," Renewable Energy, Elsevier, vol. 226(C).
    20. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:75:y:2017:i:c:p:242-263. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.