IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i18p8308-d1750694.html
   My bibliography  Save this article

Machine Learning for Optimizing Urban Photovoltaics: A Review of Static and Dynamic Factors

Author

Listed:
  • Mahdiyeh Tabatabaei

    (Department of Architecture (DA), University of Bologna, 40136 Bologna, Italy)

  • Ernesto Antonini

    (Department of Architecture (DA), University of Bologna, 40136 Bologna, Italy)

Abstract

Cities need photovoltaic (PV) systems to meet climate-neutral goals, yet dense urban forms and variable weather limit their output. This review synthesizes how machine learning (ML) models capture both static factors (orientation, roof, and façade geometry) and dynamic drivers (irradiance, transient shading, and meteorology) to predict and optimize urban PV performance. Following PRISMA 2020, we screened 111 records and analyzed 61 peer-reviewed studies (2020–2025), eight Horizon-Europe projects, as well as market reports. Deep learning models—mainly artificial and convolutional neural networks—typically reduce the mean absolute error by 10–30% (median ≈ 15%) compared with physical or empirical baselines, while random forests support transparent feature ranking. Short-term irradiance variability and local shading are the dominant dynamic drivers; roof shape and façade tilt lead the static set. Industry evidence aligns with these findings: ML-enabled inverters and module-level power electronics increase the measured annual yields by about 3–15%. A compact meta-analysis shows a pooled correlation of r ≈ 0.966 (R 2 ≈ 0.933; 95% CI 0.961–0.970) and a pooled log error ratio of −0.16 (≈15% relative error reduction), with moderate heterogeneity. Key gaps remain, such as limited data from equatorial megacities, sparse techno-economic or life-cycle metrics, and few validations under heavy soiling. We call for open datasets from multiple cities and climates, and for on-device ML (Tiny Machine Learning) with uncertainty reporting to support bankable, city-scale PV deployment.”

Suggested Citation

  • Mahdiyeh Tabatabaei & Ernesto Antonini, 2025. "Machine Learning for Optimizing Urban Photovoltaics: A Review of Static and Dynamic Factors," Sustainability, MDPI, vol. 17(18), pages 1-34, September.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:18:p:8308-:d:1750694
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/18/8308/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/18/8308/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ferrara, Maria & Della Santa, Francesco & Bilardo, Matteo & De Gregorio, Alessandro & Mastropietro, Antonio & Fugacci, Ulderico & Vaccarino, Francesco & Fabrizio, Enrico, 2021. "Design optimization of renewable energy systems for NZEBs based on deep residual learning," Renewable Energy, Elsevier, vol. 176(C), pages 590-605.
    2. Voyant, Cyril & Notton, Gilles & Kalogirou, Soteris & Nivet, Marie-Laure & Paoli, Christophe & Motte, Fabrice & Fouilloy, Alexis, 2017. "Machine learning methods for solar radiation forecasting: A review," Renewable Energy, Elsevier, vol. 105(C), pages 569-582.
    3. Jinhwa Jeong & Dongkyu Lee & Young Tae Chae, 2023. "A Novel Approach for Day-Ahead Hourly Building-Integrated Photovoltaic Power Prediction by Using Feature Engineering and Simple Weather Forecasting Service," Energies, MDPI, vol. 16(22), pages 1-21, November.
    4. Alsagri, Ali Sulaiman & Alrobaian, Abdulrahman A., 2024. "Analysis and performance prediction of a building integrated photovoltaic thermal system with and without phase change material," Energy, Elsevier, vol. 310(C).
    5. Jesús Polo & Nuria Martín-Chivelet & Miguel Alonso-Abella & Carlos Sanz-Saiz & José Cuenca & Marina de la Cruz, 2023. "Exploring the PV Power Forecasting at Building Façades Using Gradient Boosting Methods," Energies, MDPI, vol. 16(3), pages 1-12, February.
    6. Sohani, Ali & Sayyaadi, Hoseyn & Miremadi, Seyed Rahman & Yang, Xiaohu & Doranehgard, Mohammad Hossein & Nizetic, Sandro, 2023. "Determination of the best air space value for installation of a PV façade technology based on 4E characteristics," Energy, Elsevier, vol. 262(PB).
    7. Tan, Hongjun & Guo, Zhiling & Lin, Zhengyuan & Chen, Yuntian & Huang, Dou & Yuan, Wei & Zhang, Haoran & Yan, Jinyue, 2024. "General generative AI-based image augmentation method for robust rooftop PV segmentation," Applied Energy, Elsevier, vol. 368(C).
    8. Dongkyu Lee & Jinhwa Jeong & Sung Hoon Yoon & Young Tae Chae, 2019. "Improvement of Short-Term BIPV Power Predictions Using Feature Engineering and a Recurrent Neural Network," Energies, MDPI, vol. 12(17), pages 1-17, August.
    9. Dong Ha Choi & Wei Li & Albert Y. Zomaya, 2024. "Enhancing Building-Integrated Photovoltaic Power Forecasting with a Hybrid Conditional Generative Adversarial Network Framework," Energies, MDPI, vol. 17(23), pages 1-24, November.
    10. Serrano-Luján, L. & Toledo, C. & Colmenar, J.M. & Abad, J. & Urbina, A., 2022. "Accurate thermal prediction model for building-integrated photovoltaics systems using guided artificial intelligence algorithms," Applied Energy, Elsevier, vol. 315(C).
    11. Putri Nor Liyana Mohamad Radzi & Muhammad Naveed Akhter & Saad Mekhilef & Noraisyah Mohamed Shah, 2023. "Review on the Application of Photovoltaic Forecasting Using Machine Learning for Very Short- to Long-Term Forecasting," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    12. Woo-Gyun Shin & Ju-Young Shin & Hye-Mi Hwang & Chi-Hong Park & Suk-Whan Ko, 2022. "Power Generation Prediction of Building-Integrated Photovoltaic System with Colored Modules Using Machine Learning," Energies, MDPI, vol. 15(7), pages 1-17, April.
    13. Gao, Yuan & Hu, Zehuan & Yamate, Shun & Otomo, Junichiro & Chen, Wei-An & Liu, Mingzhe & Xu, Tingting & Ruan, Yingjun & Shang, Juan, 2025. "Unlocking predictive insights and interpretability in deep reinforcement learning for Building-Integrated Photovoltaic and Battery (BIPVB) systems," Applied Energy, Elsevier, vol. 384(C).
    14. Chen, Chenshun & Duan, Qiuhua & Feng, Yanxiao & Wang, Julian & Ghaeili Ardabili, Neda & Wang, Nan & Hosseini, Seyed Morteza & Shen, Chao, 2023. "Reconstruction of narrowband solar radiation for enhanced spectral selectivity in building-integrated solar energy simulations," Renewable Energy, Elsevier, vol. 219(P2).
    15. Geng, Xiaotian & Cai, Senhong & Gou, Zhonghua, 2025. "Assessing building-integrated photovoltaic potential in dense urban areas using a multi-channel single-dimensional convolutional neural network model," Applied Energy, Elsevier, vol. 377(PD).
    16. Tan, Hongjun & Guo, Zhiling & Zhang, Haoran & Chen, Qi & Lin, Zhenjia & Chen, Yuntian & Yan, Jinyue, 2023. "Enhancing PV panel segmentation in remote sensing images with constraint refinement modules," Applied Energy, Elsevier, vol. 350(C).
    17. Sankara kumar, Sundarapandian & Karthick, Alagar & Shankar, R. & Dharmaraj, Ganeshaperumal, 2024. "Energy forecasting of the building integrated photovoltaic system based on deep learning dragonfly-firefly algorithm," Energy, Elsevier, vol. 308(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Omid Pedram & Ana Soares & Pedro Moura, 2025. "A Review of Methodologies for Photovoltaic Energy Generation Forecasting in the Building Sector," Energies, MDPI, vol. 18(18), pages 1-51, September.
    2. Sohani, Ali & Cornaro, Cristina & Shahverdian, Mohammad Hassan & Moser, David & Pierro, Marco & Olabi, Abdul Ghani & Karimi, Nader & Nižetić, Sandro & Li, Larry K.B. & Doranehgard, Mohammad Hossein, 2023. "Techno-economic evaluation of a hybrid photovoltaic system with hot/cold water storage for poly-generation in a residential building," Applied Energy, Elsevier, vol. 331(C).
    3. Domenico Palladino & Nicolandrea Calabrese, 2023. "Energy Planning of Renewable Energy Sources in an Italian Context: Energy Forecasting Analysis of Photovoltaic Systems in the Residential Sector," Energies, MDPI, vol. 16(7), pages 1-28, March.
    4. Rial A. Rajagukguk & Raden A. A. Ramadhan & Hyun-Jin Lee, 2020. "A Review on Deep Learning Models for Forecasting Time Series Data of Solar Irradiance and Photovoltaic Power," Energies, MDPI, vol. 13(24), pages 1-23, December.
    5. Woo-Gyun Shin & Ju-Young Shin & Hye-Mi Hwang & Chi-Hong Park & Suk-Whan Ko, 2022. "Power Generation Prediction of Building-Integrated Photovoltaic System with Colored Modules Using Machine Learning," Energies, MDPI, vol. 15(7), pages 1-17, April.
    6. Agga, Ali & Abbou, Ahmed & Labbadi, Moussa & El Houm, Yassine, 2021. "Short-term self consumption PV plant power production forecasts based on hybrid CNN-LSTM, ConvLSTM models," Renewable Energy, Elsevier, vol. 177(C), pages 101-112.
    7. Mousavi, Navid & Kothapalli, Ganesh & Habibi, Daryoush & Das, Choton K. & Baniasadi, Ali, 2020. "A novel photovoltaic-pumped hydro storage microgrid applicable to rural areas," Applied Energy, Elsevier, vol. 262(C).
    8. Rui Zhang & Ruikai Hong & Qiannan Li & Xu He & Age Shama & Jichao Lv & Renzhe Wu, 2025. "Optimizing PV Panel Segmentation in Complex Environments Using Pre-Training and Simulated Annealing Algorithm: The JSWPVI," Land, MDPI, vol. 14(6), pages 1-20, June.
    9. Vassiliades, C. & Savvides, A. & Buonomano, A., 2022. "Building integration of active solar energy systems for façades renovation in the urban fabric: Effects on the thermal comfort in outdoor public spaces in Naples and Thessaloniki," Renewable Energy, Elsevier, vol. 190(C), pages 30-47.
    10. Erik Heilmann & Janosch Henze & Heike Wetzel, 2021. "Machine learning in energy forecasts with an application to high frequency electricity consumption data," MAGKS Papers on Economics 202135, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    11. Ke Yan & Xudong Wang & Yang Du & Ning Jin & Haichao Huang & Hangxia Zhou, 2018. "Multi-Step Short-Term Power Consumption Forecasting with a Hybrid Deep Learning Strategy," Energies, MDPI, vol. 11(11), pages 1-15, November.
    12. Andrzej Ożadowicz & Gabriela Walczyk, 2023. "Energy Performance and Control Strategy for Dynamic Façade with Perovskite PV Panels—Technical Analysis and Case Study," Energies, MDPI, vol. 16(9), pages 1-23, April.
    13. Ping-Huan Kuo & Chiou-Jye Huang, 2018. "A Green Energy Application in Energy Management Systems by an Artificial Intelligence-Based Solar Radiation Forecasting Model," Energies, MDPI, vol. 11(4), pages 1-15, April.
    14. Paik, Chunhyun & Chung, Yongjoo & Kim, Young Jin, 2021. "ELCC-based capacity credit estimation accounting for uncertainties in capacity factors and its application to solar power in Korea," Renewable Energy, Elsevier, vol. 164(C), pages 833-841.
    15. Yang, Yanru & Liu, Yu & Zhang, Yihang & Shu, Shaolong & Zheng, Junsheng, 2025. "DEST-GNN: A double-explored spatio-temporal graph neural network for multi-site intra-hour PV power forecasting," Applied Energy, Elsevier, vol. 378(PA).
    16. Da Liu & Kun Sun & Han Huang & Pingzhou Tang, 2018. "Monthly Load Forecasting Based on Economic Data by Decomposition Integration Theory," Sustainability, MDPI, vol. 10(9), pages 1-22, September.
    17. Beáta Novotná & Ľuboš Jurík & Ján Čimo & Jozef Palkovič & Branislav Chvíla & Vladimír Kišš, 2022. "Machine Learning for Pan Evaporation Modeling in Different Agroclimatic Zones of the Slovak Republic (Macro-Regions)," Sustainability, MDPI, vol. 14(6), pages 1-22, March.
    18. Diego Lopez-Bernal & David Balderas & Pedro Ponce & Arturo Molina, 2021. "Education 4.0: Teaching the Basics of KNN, LDA and Simple Perceptron Algorithms for Binary Classification Problems," Future Internet, MDPI, vol. 13(8), pages 1-14, July.
    19. AlSkaif, Tarek & Dev, Soumyabrata & Visser, Lennard & Hossari, Murhaf & van Sark, Wilfried, 2020. "A systematic analysis of meteorological variables for PV output power estimation," Renewable Energy, Elsevier, vol. 153(C), pages 12-22.
    20. Paweł Kut & Katarzyna Pietrucha-Urbanik, 2025. "Forecasting Short-Term Photovoltaic Energy Production to Optimize Self-Consumption in Home Systems Based on Real-World Meteorological Data and Machine Learning," Energies, MDPI, vol. 18(16), pages 1-31, August.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:18:p:8308-:d:1750694. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.