Author
Listed:
- Paweł Kut
(Department of Heat Engineering and Air Conditioning, Rzeszow University of Technology, Al. Powstancow Warszawy 6, 35-959 Rzeszow, Poland)
- Katarzyna Pietrucha-Urbanik
(Department of Water Supply and Sewerage Systems, Faculty of Civil, Environmental Engineering and Architecture, Rzeszow University of Technology, Al. Powstancow Warszawy 6, 35-959 Rzeszow, Poland)
Abstract
Given the growing number of residential photovoltaic installations and the challenges of self-consumption, accurate short-term PV production forecasting can become a key tool in supporting energy management. This issue is particularly significant in systems without energy storage, where excess production is fed back into the grid, reducing the profitability of prosumer investments. This paper presents an approach to forecasting short-term energy production in residential photovoltaic installations, based on real meteorological data and the use of machine learning methods. The analysis is based on measurement data from a functioning PV installation and a local weather station. This study compares three models: classical linear regression, Random Forest and the XGBoost algorithm. The method of data preparation, the model training process and the assessment of their effectiveness based on real energy production measurements are presented. This paper also includes a practical calculation example and an analysis of selected days in order to compare the forecast results with the actual production. Of the three models compared, the highest accuracy was achieved for XGBoost, with an MAE = 1.25 kWh, RMSE = 1.93 kWh, and coefficient of determination R 2 = 0.94. Compared to linear regression, this means a 66% reduction in MAE and a 41% reduction in the Random Forest model, confirming the practical usefulness of this method in a real-world environment. The proposed approach can be used in energy management systems in residential buildings, without the need to use energy storage, and can support the development of a more conscious use of energy resources on a local scale.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:16:p:4403-:d:1727192. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.