Author
Listed:
- Anna Marciniuk-Kluska
(Faculty of Social Sciences, University of Siedlce, 39 Zytnia Str., 08-110 Siedlce, Poland)
- Mariusz Kluska
(Faculty of Sciences, University of Siedlce, 54 3-Maja Str., 08-110 Siedlce, Poland)
Abstract
Faced with the challenges of the energy crisis and the need to reduce greenhouse gas emissions, Poland needs to increase the share of renewable energy sources in the energy mix. Development trends in the waste-to-energy market reflect the global energy transition. Poland generates about 13 million tonnes of municipal waste annually, a significant percentage of which is biodegradable waste that should be converted into biogas or used in thermal processes to produce electricity and heat. Despite the benefits of recovering energy from waste, there are technological, economic, and regulatory barriers that limit the development of this sector in Poland. Creating an efficient waste management system is one of the most important challenges today in terms of energy, the environment, and the economy. The circular economy is a fundamental element of the European Union’s environmental policy, including the European Green Deal, the main objective of which is to combat the carbon footprint. The amount of energy produced is decisively influenced by the structure of the deposited waste and the share of the calorific fraction in the total mass of municipal waste. This study aimed to develop forecasts for biodegradable municipal waste, using the simulation and optimisation of the exponential Brownian smoothing constant, and to estimate the value of recovered energy. The forecasts were based on data on selective waste collection from different provinces of Poland. The study reveals that the forecast for biodegradable municipal waste in the coming years shows an increasing trend, amounting to 2,696,500 tonnes in 2030, which will allow for a significant increase in energy recovery.
Suggested Citation
Anna Marciniuk-Kluska & Mariusz Kluska, 2025.
"Energy Recovery from Municipal Biodegradable Waste in a Circular Economy,"
Energies, MDPI, vol. 18(9), pages 1-17, April.
Handle:
RePEc:gam:jeners:v:18:y:2025:i:9:p:2210-:d:1643311
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:9:p:2210-:d:1643311. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.