IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i9p2210-d1643311.html
   My bibliography  Save this article

Energy Recovery from Municipal Biodegradable Waste in a Circular Economy

Author

Listed:
  • Anna Marciniuk-Kluska

    (Faculty of Social Sciences, University of Siedlce, 39 Zytnia Str., 08-110 Siedlce, Poland)

  • Mariusz Kluska

    (Faculty of Sciences, University of Siedlce, 54 3-Maja Str., 08-110 Siedlce, Poland)

Abstract

Faced with the challenges of the energy crisis and the need to reduce greenhouse gas emissions, Poland needs to increase the share of renewable energy sources in the energy mix. Development trends in the waste-to-energy market reflect the global energy transition. Poland generates about 13 million tonnes of municipal waste annually, a significant percentage of which is biodegradable waste that should be converted into biogas or used in thermal processes to produce electricity and heat. Despite the benefits of recovering energy from waste, there are technological, economic, and regulatory barriers that limit the development of this sector in Poland. Creating an efficient waste management system is one of the most important challenges today in terms of energy, the environment, and the economy. The circular economy is a fundamental element of the European Union’s environmental policy, including the European Green Deal, the main objective of which is to combat the carbon footprint. The amount of energy produced is decisively influenced by the structure of the deposited waste and the share of the calorific fraction in the total mass of municipal waste. This study aimed to develop forecasts for biodegradable municipal waste, using the simulation and optimisation of the exponential Brownian smoothing constant, and to estimate the value of recovered energy. The forecasts were based on data on selective waste collection from different provinces of Poland. The study reveals that the forecast for biodegradable municipal waste in the coming years shows an increasing trend, amounting to 2,696,500 tonnes in 2030, which will allow for a significant increase in energy recovery.

Suggested Citation

  • Anna Marciniuk-Kluska & Mariusz Kluska, 2025. "Energy Recovery from Municipal Biodegradable Waste in a Circular Economy," Energies, MDPI, vol. 18(9), pages 1-17, April.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:9:p:2210-:d:1643311
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/9/2210/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/9/2210/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jonek-Kowalska, Izabela, 2022. "Towards the reduction of CO2 emissions. Paths of pro-ecological transformation of energy mixes in European countries with an above-average share of coal in energy consumption," Resources Policy, Elsevier, vol. 77(C).
    2. Tomasz Rokicki & Aleksandra Perkowska & Bogdan Klepacki & Piotr Bórawski & Aneta Bełdycka-Bórawska & Konrad Michalski, 2021. "Changes in Energy Consumption in Agriculture in the EU Countries," Energies, MDPI, vol. 14(6), pages 1-21, March.
    3. Themelis, Nickolas J. & Ulloa, Priscilla A., 2007. "Methane generation in landfills," Renewable Energy, Elsevier, vol. 32(7), pages 1243-1257.
    4. Rodrigues, Livia Fernanda & Santos, Ivan Felipe Silva dos & Santos, Thereza Isabelle Silva dos & Barros, Regina Mambeli & Tiago Filho, Geraldo Lúcio, 2022. "Energy and economic evaluation of MSW incineration and gasification in Brazil," Renewable Energy, Elsevier, vol. 188(C), pages 933-944.
    5. Michał Bernard Pietrzak & Bartłomiej Igliński & Wojciech Kujawski & Paweł Iwański, 2021. "Energy Transition in Poland—Assessment of the Renewable Energy Sector," Energies, MDPI, vol. 14(8), pages 1-23, April.
    6. Jacobson, Mark Z. & Delucchi, Mark A., 2011. "Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials," Energy Policy, Elsevier, vol. 39(3), pages 1154-1169, March.
    7. Szopik-Depczyńska, Katarzyna & Kędzierska-Szczepaniak, Angelika & Szczepaniak, Krzysztof & Cheba, Katarzyna & Gajda, Waldemar & Ioppolo, Giuseppe, 2018. "Innovation in sustainable development: an investigation of the EU context using 2030 agenda indicators," Land Use Policy, Elsevier, vol. 79(C), pages 251-262.
    8. Lopes, E.J. & Okamura, L.A. & Maruyama, S.A. & Yamamoto, C.I., 2018. "Evaluation of energy gain from the segregation of organic materials from municipal solid waste in gasification processes," Renewable Energy, Elsevier, vol. 116(PA), pages 623-629.
    9. Dorota Miłek & Paulina Nowak & Jolanta Latosińska, 2022. "The Development of Renewable Energy Sources in the European Union in the Light of the European Green Deal," Energies, MDPI, vol. 15(15), pages 1-17, August.
    10. Anna Marciniuk-Kluska & Mariusz Kluska, 2023. "Forecasting Energy Recovery from Municipal Waste in a Closed-Loop Economy," Energies, MDPI, vol. 16(6), pages 1-15, March.
    11. Bartłomiej Bajan & Joanna Łukasiewicz & Aldona Mrówczyńska-Kamińska, 2021. "Energy Consumption and Its Structures in Food Production Systems of the Visegrad Group Countries Compared with EU-15 Countries," Energies, MDPI, vol. 14(13), pages 1-24, July.
    12. Silva, Leo Jaymee de Vilas Boas da & Santos, Ivan Felipe Silva dos & Mensah, Johnson Herlich Roslee & Gonçalves, Andriani Tavares Tenório & Barros, Regina Mambeli, 2020. "Incineration of municipal solid waste in Brazil: An analysis of the economically viable energy potential," Renewable Energy, Elsevier, vol. 149(C), pages 1386-1394.
    13. Rajaeifar, Mohammad Ali & Ghanavati, Hossein & Dashti, Behrouz B. & Heijungs, Reinout & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2017. "Electricity generation and GHG emission reduction potentials through different municipal solid waste management technologies: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 414-439.
    14. Aurelia Rybak & Aleksandra Rybak & Jarosław Joostberens & Spas D. Kolev, 2022. "Cluster Analysis of the EU-27 Countries in Light of the Guiding Principles of the European Green Deal, with Particular Emphasis on Poland," Energies, MDPI, vol. 15(14), pages 1-20, July.
    15. Bożena Gajdzik & Radosław Wolniak & Wieslaw Wes Grebski, 2022. "An Econometric Model of the Operation of the Steel Industry in POLAND in the Context of Process Heat and Energy Consumption," Energies, MDPI, vol. 15(21), pages 1-26, October.
    16. Balezentis, Tomas, 2020. "Shrinking ageing population and other drivers of energy consumption and CO2 emission in the residential sector: A case from Eastern Europe," Energy Policy, Elsevier, vol. 140(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anna Marciniuk-Kluska & Mariusz Kluska, 2023. "Forecasting Energy Recovery from Municipal Waste in a Closed-Loop Economy," Energies, MDPI, vol. 16(6), pages 1-15, March.
    2. Marcin Bukowski & Janusz Majewski & Agnieszka Sobolewska, 2023. "The Environmental Impact of Changes in the Structure of Electricity Sources in Europe," Energies, MDPI, vol. 16(1), pages 1-22, January.
    3. Natália Dadario & Luís Roberto Almeida Gabriel Filho & Camila Pires Cremasco & Felipe André dos Santos & Maria Cristina Rizk & Mario Mollo Neto, 2023. "Waste-to-Energy Recovery from Municipal Solid Waste: Global Scenario and Prospects of Mass Burning Technology in Brazil," Sustainability, MDPI, vol. 15(6), pages 1-20, March.
    4. Robert Sidełko, 2021. "Application of Technological Processes to Create a Unitary Model for Energy Recovery from Municipal Waste," Energies, MDPI, vol. 14(11), pages 1-15, May.
    5. Olgun Aydin & Bartłomiej Igliński & Krzysztof Krukowski & Marek Siemiński, 2022. "Analyzing Wind Energy Potential Using Efficient Global Optimization: A Case Study for the City Gdańsk in Poland," Energies, MDPI, vol. 15(9), pages 1-22, April.
    6. Bartłomiej Igliński & Michał Bernard Pietrzak & Urszula Kiełkowska & Mateusz Skrzatek & Artur Gajdos & Anas Zyadin & Karthikeyan Natarajan, 2022. "How to Meet the Green Deal Objectives—Is It Possible to Obtain 100% RES at the Regional Level in the EU?," Energies, MDPI, vol. 15(6), pages 1-24, March.
    7. Bartłomiej Iglinski & Karol Flisikowski & Michał Bernard Pietrzak & Urszula Kiełkowska & Mateusz Skrzatek & Anas Zyadin & Karthikeyan Natarajan, 2021. "Renewable Energy in the Pomerania Voivodeship—Institutional, Economic, Environmental and Physical Aspects in Light of EU Energy Transformation," Energies, MDPI, vol. 14(24), pages 1-27, December.
    8. Robert Huterski & Agnieszka Huterska & Ewa Zdunek-Rosa & Grażyna Voss, 2021. "Evaluation of the Level of Electricity Generation from Renewable Energy Sources in European Union Countries," Energies, MDPI, vol. 14(23), pages 1-18, December.
    9. Endre Harsányi & Bashar Bashir & Gafar Almhamad & Omar Hijazi & Mona Maze & Ahmed Elbeltagi & Abdullah Alsalman & Glory O. Enaruvbe & Safwan Mohammed & Szilárd Szabó, 2021. "GHGs Emission from the Agricultural Sector within EU-28: A Multivariate Analysis Approach," Energies, MDPI, vol. 14(20), pages 1-18, October.
    10. Katarzyna Cheba & Iwona Bąk, 2021. "Environmental Production Efficiency in the European Union Countries as a Tool for the Implementation of Goal 7 of the 2030 Agenda," Energies, MDPI, vol. 14(15), pages 1-19, July.
    11. Lee, Yeol-Lim & Kim, Kyoung-Jin & Hong, Ga-Ram & Ahn, Seon-Yong & Kim, Beom-Jun & Shim, Jae-Oh & Roh, Hyun-Seog, 2021. "Highly sulfur tolerant and regenerable Pt/CeO2 catalyst for waste to energy," Renewable Energy, Elsevier, vol. 178(C), pages 334-343.
    12. Rajaeifar, Mohammad Ali & Sadeghzadeh Hemayati, Saeed & Tabatabaei, Meisam & Aghbashlo, Mortaza & Mahmoudi, Seyed Bagher, 2019. "A review on beet sugar industry with a focus on implementation of waste-to-energy strategy for power supply," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 423-442.
    13. Łukasz Jarosław Kozar & Adam Sulich, 2023. "Green Jobs in the Energy Sector," Energies, MDPI, vol. 16(7), pages 1-20, March.
    14. Magdalena Majchrzak & Piotr Szczypa & Krzysztof Adamowicz, 2022. "Supply of Wood Biomass in Poland in Terms of Extraordinary Threat and Energy Transition," Energies, MDPI, vol. 15(15), pages 1-22, July.
    15. Elżbieta Bukalska & Marek Zinecker & Michał Bernard Pietrzak, 2021. "Socioemotional Wealth (SEW) of Family Firms and CEO Behavioral Biases in the Implementation of Sustainable Development Goals (SDGs)," Energies, MDPI, vol. 14(21), pages 1-15, November.
    16. Tomasz L. Nawrocki & Izabela Jonek-Kowalska, 2023. "Efficiency of Polish Energy Companies in the Context of EU Climate Policy," Energies, MDPI, vol. 16(2), pages 1-21, January.
    17. Khan, Muhammad Sajid & Huan, Qun & Yan, Mi & Ali, Mustajab & Noor, Obaid Ullah & Abid, Muhammad, 2022. "A novel configuration of solar integrated waste-to-energy incineration plant for multi-generational purpose: An effort for achieving maximum performance," Renewable Energy, Elsevier, vol. 194(C), pages 604-620.
    18. Bartłomiej Igliński & Michał Bernard Pietrzak, 2022. "Renewable and Sustainable Energy: Current State and Prospects," Energies, MDPI, vol. 15(13), pages 1-7, June.
    19. Monika Klemke-Pitek & Magdalena Majchrzak, 2022. "Pro-Ecological Activities and Shaping the Competitive Advantage of Small and Medium-Sized Enterprises in the Aspect of Sustainable Energy Management," Energies, MDPI, vol. 15(6), pages 1-23, March.
    20. Arsani Alina & Stefan George, 2024. "Energy Transition and European Sub-Models. Restructuring EU Economy," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 18(1), pages 86-101.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:9:p:2210-:d:1643311. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.