IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i23p5877-d1527589.html
   My bibliography  Save this article

Enhancing Building-Integrated Photovoltaic Power Forecasting with a Hybrid Conditional Generative Adversarial Network Framework

Author

Listed:
  • Dong Ha Choi

    (School of Computer Science, The Usiversity of Sydney, Sydney, NSW 2006, Australia)

  • Wei Li

    (School of Computer Science, The Usiversity of Sydney, Sydney, NSW 2006, Australia)

  • Albert Y. Zomaya

    (School of Computer Science, The Usiversity of Sydney, Sydney, NSW 2006, Australia)

Abstract

This paper presents a novel framework that integrates Conditional Generative Adversarial Networks (CGANs) and TimeGAN to generate synthetic Building-Integrated Photovoltaic (BIPV) power data, addressing the challenge of data scarcity in this domain. By incorporating time-related attributes as conditioning information, our method ensures the preservation of chronological order and enhances data fidelity. A tailored learning scheme is implemented to capture the unique characteristics of solar power generation, particularly during sunrise and sunset. Comprehensive evaluations demonstrate the framework’s effectiveness in generating high-quality synthetic data, evidenced by a 79.58% improvement in the discriminative score and a 13.46% improvement in the predictive score compared to TimeGAN. Moreover, integrating the synthetic data into forecasting models resulted in up to 23.56% improvement in mean absolute error (MAE) for BIPV power generation predictions. These results highlight the potential of our framework to enhance prediction accuracy and optimize data utilization in renewable energy applications.

Suggested Citation

  • Dong Ha Choi & Wei Li & Albert Y. Zomaya, 2024. "Enhancing Building-Integrated Photovoltaic Power Forecasting with a Hybrid Conditional Generative Adversarial Network Framework," Energies, MDPI, vol. 17(23), pages 1-24, November.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:5877-:d:1527589
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/23/5877/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/23/5877/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohan, Neethu & Soman, K.P. & Sachin Kumar, S., 2018. "A data-driven strategy for short-term electric load forecasting using dynamic mode decomposition model," Applied Energy, Elsevier, vol. 232(C), pages 229-244.
    2. Qu, Jiaqi & Qian, Zheng & Pei, Yan, 2021. "Day-ahead hourly photovoltaic power forecasting using attention-based CNN-LSTM neural network embedded with multiple relevant and target variables prediction pattern," Energy, Elsevier, vol. 232(C).
    3. Jeong, Jaeik & Kim, Hongseok, 2021. "DeepComp: Deep reinforcement learning based renewable energy error compensable forecasting," Applied Energy, Elsevier, vol. 294(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kong, Xiangyu & Li, Chuang & Wang, Chengshan & Zhang, Yusen & Zhang, Jian, 2020. "Short-term electrical load forecasting based on error correction using dynamic mode decomposition," Applied Energy, Elsevier, vol. 261(C).
    2. Zheng, Lingwei & Su, Ran & Sun, Xinyu & Guo, Siqi, 2023. "Historical PV-output characteristic extraction based weather-type classification strategy and its forecasting method for the day-ahead prediction of PV output," Energy, Elsevier, vol. 271(C).
    3. Lai, Wenzhe & Zhen, Zhao & Wang, Fei & Fu, Wenjie & Wang, Junlong & Zhang, Xudong & Ren, Hui, 2024. "Sub-region division based short-term regional distributed PV power forecasting method considering spatio-temporal correlations," Energy, Elsevier, vol. 288(C).
    4. Wang, Chang & Zheng, Jianqin & Liang, Yongtu & Wang, Bohong & Klemeš, Jiří Jaromír & Zhu, Zhu & Liao, Qi, 2022. "Deeppipe: An intelligent monitoring framework for operating condition of multi-product pipelines," Energy, Elsevier, vol. 261(PB).
    5. Khan, Zulfiqar Ahmad & Khan, Shabbir Ahmad & Hussain, Tanveer & Baik, Sung Wook, 2024. "DSPM: Dual sequence prediction model for efficient energy management in micro-grid," Applied Energy, Elsevier, vol. 356(C).
    6. Hu, Yusha & Li, Jigeng & Hong, Mengna & Ren, Jingzheng & Lin, Ruojue & Liu, Yue & Liu, Mengru & Man, Yi, 2019. "Short term electric load forecasting model and its verification for process industrial enterprises based on hybrid GA-PSO-BPNN algorithm—A case study of papermaking process," Energy, Elsevier, vol. 170(C), pages 1215-1227.
    7. Liu, Yanli & Wang, Junyi & Liu, Liqi, 2024. "Physics-informed reinforcement learning for probabilistic wind power forecasting under extreme events," Applied Energy, Elsevier, vol. 376(PA).
    8. Lin, Yu & Lu, Qin & Tan, Bin & Yu, Yuanyuan, 2022. "Forecasting energy prices using a novel hybrid model with variational mode decomposition," Energy, Elsevier, vol. 246(C).
    9. Yang, Wendong & Wang, Jianzhou & Niu, Tong & Du, Pei, 2019. "A hybrid forecasting system based on a dual decomposition strategy and multi-objective optimization for electricity price forecasting," Applied Energy, Elsevier, vol. 235(C), pages 1205-1225.
    10. Ahmad, Tanveer & Huanxin, Chen & Zhang, Dongdong & Zhang, Hongcai, 2020. "Smart energy forecasting strategy with four machine learning models for climate-sensitive and non-climate sensitive conditions," Energy, Elsevier, vol. 198(C).
    11. Gonçalves, Rui & Ribeiro, Vitor Miguel & Pereira, Fernando Lobo, 2023. "Variable Split Convolutional Attention: A novel Deep Learning model applied to the household electric power consumption," Energy, Elsevier, vol. 274(C).
    12. Xu, Shaozhen & Liu, Jun & Huang, Xiaoqiao & Li, Chengli & Chen, Zaiqing & Tai, Yonghang, 2024. "Minutely multi-step irradiance forecasting based on all-sky images using LSTM-InformerStack hybrid model with dual feature enhancement," Renewable Energy, Elsevier, vol. 224(C).
    13. Yiling Fan & Zhuang Ma & Wanwei Tang & Jing Liang & Pengfei Xu, 2024. "Using Crested Porcupine Optimizer Algorithm and CNN-LSTM-Attention Model Combined with Deep Learning Methods to Enhance Short-Term Power Forecasting in PV Generation," Energies, MDPI, vol. 17(14), pages 1-17, July.
    14. Xu, Aiting & Chen, Jiapeng & Li, Jinchang & Chen, Zheyu & Xu, Shenyi & Nie, Ying, 2025. "Multivariate rolling decomposition hybrid learning paradigm for power load forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 212(C).
    15. Wang, Xinyu & Ma, Wenping, 2024. "A hybrid deep learning model with an optimal strategy based on improved VMD and transformer for short-term photovoltaic power forecasting," Energy, Elsevier, vol. 295(C).
    16. Khan, Taimoor & Choi, Chang, 2025. "Attention enhanced dual stream network with advanced feature selection for power forecasting," Applied Energy, Elsevier, vol. 377(PC).
    17. Yang, Dongchuan & Guo, Ju-e & Li, Yanzhao & Sun, Shaolong & Wang, Shouyang, 2023. "Short-term load forecasting with an improved dynamic decomposition-reconstruction-ensemble approach," Energy, Elsevier, vol. 263(PA).
    18. Faisal Mohammad & Mohamed A. Ahmed & Young-Chon Kim, 2021. "Efficient Energy Management Based on Convolutional Long Short-Term Memory Network for Smart Power Distribution System," Energies, MDPI, vol. 14(19), pages 1-23, September.
    19. Somu, Nivethitha & M R, Gauthama Raman & Ramamritham, Krithi, 2020. "A hybrid model for building energy consumption forecasting using long short term memory networks," Applied Energy, Elsevier, vol. 261(C).
    20. Wang, Jianzhou & Xing, Qianyi & Zeng, Bo & Zhao, Weigang, 2022. "An ensemble forecasting system for short-term power load based on multi-objective optimizer and fuzzy granulation," Applied Energy, Elsevier, vol. 327(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:5877-:d:1527589. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.