IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v333y2023ics0306261922018360.html
   My bibliography  Save this article

Remote sensing of photovoltaic scenarios: Techniques, applications and future directions

Author

Listed:
  • Chen, Qi
  • Li, Xinyuan
  • Zhang, Zhengjia
  • Zhou, Chao
  • Guo, Zhiling
  • Liu, Zhengguang
  • Zhang, Haoran

Abstract

Developing solar photovoltaic (PV) systems is an effective way to address the problems of limited fossil fuel reserves, soaring world energy demand and global climate change. The earth observation information provides a promising perspective for estimating the PV energy potential and understanding the status of the PV system development, which is critical for making scientifically sound and cost-optimal sustainable planning strategies. Remote sensing (RS), a versatile technology that captures surface information at various temporal and spatial scales, is now widely applied in different fields of the PV development. However, despite the rapid growth of related research, there is still a lack of comprehensive review on the application of RS to different stages (i.e., planning, site selection, installation, maintenance, etc.) of the PV system development. This paper systematically reviews the research progress of RS technology applied throughout various stages of the PV system development. The reviewed literatures are organized as four major parts: i) PV potential estimation, ii) PV array detection, iii) PV fault monitoring and diagnosis, and iv) other cross-cutting areas where RS can facilitate PV development. We conclude that RS technology can bridge the gap caused by the traditional methods in effective assessment of resource potential, large-scale data analysis and PV health monitoring, which can provide strong support in assisting the planning, management, and decision-making of PV systems. Finally, we discuss future challenges and opportunities for RS technology in PV applications for advancing the research in this area.

Suggested Citation

  • Chen, Qi & Li, Xinyuan & Zhang, Zhengjia & Zhou, Chao & Guo, Zhiling & Liu, Zhengguang & Zhang, Haoran, 2023. "Remote sensing of photovoltaic scenarios: Techniques, applications and future directions," Applied Energy, Elsevier, vol. 333(C).
  • Handle: RePEc:eee:appene:v:333:y:2023:i:c:s0306261922018360
    DOI: 10.1016/j.apenergy.2022.120579
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922018360
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120579?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Deo, Ravinesh C. & Şahin, Mehmet & Adamowski, Jan F. & Mi, Jianchun, 2019. "Universally deployable extreme learning machines integrated with remotely sensed MODIS satellite predictors over Australia to forecast global solar radiation: A new approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 235-261.
    2. Gherboudj, Imen & Ghedira, Hosni, 2016. "Assessment of solar energy potential over the United Arab Emirates using remote sensing and weather forecast data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1210-1224.
    3. Voyant, Cyril & Notton, Gilles & Kalogirou, Soteris & Nivet, Marie-Laure & Paoli, Christophe & Motte, Fabrice & Fouilloy, Alexis, 2017. "Machine learning methods for solar radiation forecasting: A review," Renewable Energy, Elsevier, vol. 105(C), pages 569-582.
    4. Zappa, William & van den Broek, Machteld, 2018. "Analysing the potential of integrating wind and solar power in Europe using spatial optimisation under various scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1192-1216.
    5. Jiang, Mingkun & Qi, Lingfei & Yu, Ziyi & Wu, Dadi & Si, Pengfei & Li, Peiran & Wei, Wendong & Yu, Xinhai & Yan, Jinyue, 2021. "National level assessment of using existing airport infrastructures for photovoltaic deployment," Applied Energy, Elsevier, vol. 298(C).
    6. Vincenzo Franzitta & Domenico Curto & Davide Rao, 2016. "Energetic Sustainability Using Renewable Energies in the Mediterranean Sea," Sustainability, MDPI, vol. 8(11), pages 1-16, November.
    7. Chen Liping & Sun Yujun & Sajjad Saeed, 2018. "Monitoring and predicting land use and land cover changes using remote sensing and GIS techniques—A case study of a hilly area, Jiangle, China," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-23, July.
    8. Kumar, Manish & Kumar, Arun, 2019. "Experimental validation of performance and degradation study of canal-top photovoltaic system," Applied Energy, Elsevier, vol. 243(C), pages 102-118.
    9. Ioannidis, Romanos & Koutsoyiannis, Demetris, 2020. "A review of land use, visibility and public perception of renewable energy in the context of landscape impact," Applied Energy, Elsevier, vol. 276(C).
    10. Zhong, Teng & Zhang, Kai & Chen, Min & Wang, Yijie & Zhu, Rui & Zhang, Zhixin & Zhou, Zixuan & Qian, Zhen & Lv, Guonian & Yan, Jinyue, 2021. "Assessment of solar photovoltaic potentials on urban noise barriers using street-view imagery," Renewable Energy, Elsevier, vol. 168(C), pages 181-194.
    11. Mamia, I. & Appelbaum, J., 2016. "Shadow analysis of wind turbines for dual use of land for combined wind and solar photovoltaic power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 713-718.
    12. L. Kruitwagen & K. T. Story & J. Friedrich & L. Byers & S. Skillman & C. Hepburn, 2021. "A global inventory of photovoltaic solar energy generating units," Nature, Nature, vol. 598(7882), pages 604-610, October.
    13. Li, B. & Delpha, C. & Diallo, D. & Migan-Dubois, A., 2021. "Application of Artificial Neural Networks to photovoltaic fault detection and diagnosis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    14. Jinyoung Song & Yosoon Choi, 2016. "Analysis of the Potential for Use of Floating Photovoltaic Systems on Mine Pit Lakes: Case Study at the Ssangyong Open-Pit Limestone Mine in Korea," Energies, MDPI, vol. 9(2), pages 1-13, February.
    15. Lingjun Wang & Ying Wang & Jian Chen, 2019. "Assessment of the Ecological Niche of Photovoltaic Agriculture in China," Sustainability, MDPI, vol. 11(8), pages 1-17, April.
    16. Stefania De Medici, 2021. "Italian Architectural Heritage and Photovoltaic Systems. Matching Style with Sustainability," Sustainability, MDPI, vol. 13(4), pages 1-23, February.
    17. Jarach, M., 1989. "An overview of the literature on barriers to the diffusion of renewable energy sources in agriculture," Applied Energy, Elsevier, vol. 32(2), pages 117-131.
    18. Mahtta, Richa & Joshi, P.K. & Jindal, Alok Kumar, 2014. "Solar power potential mapping in India using remote sensing inputs and environmental parameters," Renewable Energy, Elsevier, vol. 71(C), pages 255-262.
    19. Huerta Herraiz, Álvaro & Pliego Marugán, Alberto & García Márquez, Fausto Pedro, 2020. "Photovoltaic plant condition monitoring using thermal images analysis by convolutional neural network-based structure," Renewable Energy, Elsevier, vol. 153(C), pages 334-348.
    20. Xue, Jinlin, 2017. "Photovoltaic agriculture - New opportunity for photovoltaic applications in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1-9.
    21. Choi, Yosoon & Song, Jinyoung, 2017. "Review of photovoltaic and wind power systems utilized in the mining industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1386-1391.
    22. Antonanzas-Torres, F. & Urraca, R. & Polo, J. & Perpiñán-Lamigueiro, O. & Escobar, R., 2019. "Clear sky solar irradiance models: A review of seventy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 374-387.
    23. Brandi McKuin & Andrew Zumkehr & Jenny Ta & Roger Bales & Joshua H. Viers & Tapan Pathak & J. Elliott Campbell, 2021. "Energy and water co-benefits from covering canals with solar panels," Nature Sustainability, Nature, vol. 4(7), pages 609-617, July.
    24. Zhang, Chen & Li, Zhixin & Jiang, Haihua & Luo, Yongqiang & Xu, Shen, 2021. "Deep learning method for evaluating photovoltaic potential of urban land-use: A case study of Wuhan, China," Applied Energy, Elsevier, vol. 283(C).
    25. Sun, Tao & Shan, Ming & Rong, Xing & Yang, Xudong, 2022. "Estimating the spatial distribution of solar photovoltaic power generation potential on different types of rural rooftops using a deep learning network applied to satellite images," Applied Energy, Elsevier, vol. 315(C).
    26. Yongshi Jie & Xianhua Ji & Anzhi Yue & Jingbo Chen & Yupeng Deng & Jing Chen & Yi Zhang, 2020. "Combined Multi-Layer Feature Fusion and Edge Detection Method for Distributed Photovoltaic Power Station Identification," Energies, MDPI, vol. 13(24), pages 1-19, December.
    27. Zhong, Teng & Zhang, Zhixin & Chen, Min & Zhang, Kai & Zhou, Zixuan & Zhu, Rui & Wang, Yijie & Lü, Guonian & Yan, Jinyue, 2021. "A city-scale estimation of rooftop solar photovoltaic potential based on deep learning," Applied Energy, Elsevier, vol. 298(C).
    28. Yosoon Choi & Jinyoung Song, 2016. "Sustainable Development of Abandoned Mine Areas Using Renewable Energy Systems: A Case Study of the Photovoltaic Potential Assessment at the Tailings Dam of Abandoned Sangdong Mine, Korea," Sustainability, MDPI, vol. 8(12), pages 1-12, December.
    29. Akarslan, Emre & Hocaoglu, Fatih Onur, 2016. "A novel adaptive approach for hourly solar radiation forecasting," Renewable Energy, Elsevier, vol. 87(P1), pages 628-633.
    30. Pillai, Dhanup S. & Rajasekar, N., 2018. "A comprehensive review on protection challenges and fault diagnosis in PV systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 18-40.
    31. Wittmann, H. & Bajons, P. & Doneus, M. & Friesinger, H., 1997. "Identification of roof areas suited for solar energy conversion systems," Renewable Energy, Elsevier, vol. 11(1), pages 25-36.
    32. Triki-Lahiani, Asma & Bennani-Ben Abdelghani, Afef & Slama-Belkhodja, Ilhem, 2018. "Fault detection and monitoring systems for photovoltaic installations: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2680-2692.
    33. Edun, Ayobami S. & Perry, Kirsten & Harley, Joel B. & Deline, Chris, 2021. "Unsupervised azimuth estimation of solar arrays in low-resolution satellite imagery through semantic segmentation and Hough transform," Applied Energy, Elsevier, vol. 298(C).
    34. Mayer, Kevin & Rausch, Benjamin & Arlt, Marie-Louise & Gust, Gunther & Wang, Zhecheng & Neumann, Dirk & Rajagopal, Ram, 2022. "3D-PV-Locator: Large-scale detection of rooftop-mounted photovoltaic systems in 3D," Applied Energy, Elsevier, vol. 310(C).
    35. Aline Kirsten Vidal de Oliveira & Mohammadreza Aghaei & Ricardo Rüther, 2022. "Automatic Inspection of Photovoltaic Power Plants Using Aerial Infrared Thermography: A Review," Energies, MDPI, vol. 15(6), pages 1-24, March.
    36. Malof, Jordan M. & Bradbury, Kyle & Collins, Leslie M. & Newell, Richard G., 2016. "Automatic detection of solar photovoltaic arrays in high resolution aerial imagery," Applied Energy, Elsevier, vol. 183(C), pages 229-240.
    37. Sebastian Krapf & Nils Kemmerzell & Syed Khawaja Haseeb Uddin & Manuel Hack Vázquez & Fabian Netzler & Markus Lienkamp, 2021. "Towards Scalable Economic Photovoltaic Potential Analysis Using Aerial Images and Deep Learning," Energies, MDPI, vol. 14(13), pages 1-22, June.
    38. Gassar, Abdo Abdullah Ahmed & Cha, Seung Hyun, 2021. "Review of geographic information systems-based rooftop solar photovoltaic potential estimation approaches at urban scales," Applied Energy, Elsevier, vol. 291(C).
    39. Livera, Andreas & Theristis, Marios & Makrides, George & Georghiou, George E., 2019. "Recent advances in failure diagnosis techniques based on performance data analysis for grid-connected photovoltaic systems," Renewable Energy, Elsevier, vol. 133(C), pages 126-143.
    40. Wu, Yunna & Xiao, Xinli & Song, Zongyun, 2017. "Competitiveness analysis of coal industry in China: A diamond model study," Resources Policy, Elsevier, vol. 52(C), pages 39-53.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Zhiling & Zhuang, Zhan & Tan, Hongjun & Liu, Zhengguang & Li, Peiran & Lin, Zhengyuan & Shang, Wen-Long & Zhang, Haoran & Yan, Jinyue, 2023. "Accurate and generalizable photovoltaic panel segmentation using deep learning for imbalanced datasets," Renewable Energy, Elsevier, vol. 219(P1).
    2. Mukhtar Iderawumi Abdulraheem & Wei Zhang & Shixin Li & Ata Jahangir Moshayedi & Aitazaz A. Farooque & Jiandong Hu, 2023. "Advancement of Remote Sensing for Soil Measurements and Applications: A Comprehensive Review," Sustainability, MDPI, vol. 15(21), pages 1-32, October.
    3. Li, Peiquan & Zhao, Ziwen & Li, Jianling & Liu, Zhengguang & Liu, Yong & Mahmud, Md Apel & Sun, Yong & Chen, Diyi, 2023. "Unlocking potential contribution of seasonal pumped storage to ensure the flexibility of power systems with high proportion of renewable energy sources," Renewable Energy, Elsevier, vol. 218(C).
    4. Song, Chenchen & Guo, Zhiling & Liu, Zhengguang & Hongyun, Zhang & Liu, Ran & Zhang, Haoran, 2024. "Application of photovoltaics on different types of land in China: Opportunities, status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    5. Yang, Ruiqing & He, Guojin & Yin, Ranyu & Wang, Guizhou & Zhang, Zhaoming & Long, Tengfei & Peng, Yan, 2024. "Weakly-semi supervised extraction of rooftop photovoltaics from high-resolution images based on segment anything model and class activation map," Applied Energy, Elsevier, vol. 361(C).
    6. Salim, Daniel Henrique Carneiro & de Sousa Mello, Caio César & Franco, Guilherme Gandra & de Albuquerque Nóbrega, Rodrigo Affonso & de Paula, Eduardo Coutinho & Fonseca, Bráulio Magalhães & Nero, Marc, 2023. "Unveiling Fernando de Noronha Island's photovoltaic potential with unmanned aerial survey and irradiation modeling," Applied Energy, Elsevier, vol. 337(C).
    7. Anton Vernet & Alexandre Fabregat, 2023. "Evaluation of Empirical Daily Solar Radiation Models for the Northeast Coast of the Iberian Peninsula," Energies, MDPI, vol. 16(6), pages 1-18, March.
    8. Guo, Zhiling & Lu, Jiayue & Chen, Qi & Liu, Zhengguang & Song, Chenchen & Tan, Hongjun & Zhang, Haoran & Yan, Jinyue, 2024. "TransPV: Refining photovoltaic panel detection accuracy through a vision transformer-based deep learning model," Applied Energy, Elsevier, vol. 355(C).
    9. Zhang, Shufan & Zhou, Nan & Feng, Wei & Ma, Minda & Xiang, Xiwang & You, Kairui, 2023. "Pathway for decarbonizing residential building operations in the US and China beyond the mid-century," Applied Energy, Elsevier, vol. 342(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mao, Hongzhi & Chen, Xie & Luo, Yongqiang & Deng, Jie & Tian, Zhiyong & Yu, Jinghua & Xiao, Yimin & Fan, Jianhua, 2023. "Advances and prospects on estimating solar photovoltaic installation capacity and potential based on satellite and aerial images," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    2. Nien-Che Yang & Harun Ismail, 2022. "Voting-Based Ensemble Learning Algorithm for Fault Detection in Photovoltaic Systems under Different Weather Conditions," Mathematics, MDPI, vol. 10(2), pages 1-18, January.
    3. Marcus Vinícius Coelho Vieira da Costa & Osmar Luiz Ferreira de Carvalho & Alex Gois Orlandi & Issao Hirata & Anesmar Olino de Albuquerque & Felipe Vilarinho e Silva & Renato Fontes Guimarães & Robert, 2021. "Remote Sensing for Monitoring Photovoltaic Solar Plants in Brazil Using Deep Semantic Segmentation," Energies, MDPI, vol. 14(10), pages 1-15, May.
    4. Ding, Feng & Yang, Jianping & Zhou, Zan, 2023. "Economic profits and carbon reduction potential of photovoltaic power generation for China's high-speed railway infrastructure," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    5. Žalik, Mitja & Mongus, Domen & Lukač, Niko, 2024. "High-resolution spatiotemporal assessment of solar potential from remote sensing data using deep learning," Renewable Energy, Elsevier, vol. 222(C).
    6. Ma, Chao & Liu, Zhao, 2022. "Water-surface photovoltaics: Performance, utilization, and interactions with water eco-environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    7. Jiang, Hou & Zhang, Xiaotong & Yao, Ling & Lu, Ning & Qin, Jun & Liu, Tang & Zhou, Chenghu, 2023. "High-resolution analysis of rooftop photovoltaic potential based on hourly generation simulations and load profiles," Applied Energy, Elsevier, vol. 348(C).
    8. Mokhinabonu Mardonova & Yosoon Choi, 2019. "Assessment of Photovoltaic Potential of Mining Sites in Uzbekistan," Sustainability, MDPI, vol. 11(10), pages 1-13, May.
    9. Yagli, Gokhan Mert & Yang, Dazhi & Gandhi, Oktoviano & Srinivasan, Dipti, 2020. "Can we justify producing univariate machine-learning forecasts with satellite-derived solar irradiance?," Applied Energy, Elsevier, vol. 259(C).
    10. Li, B. & Delpha, C. & Diallo, D. & Migan-Dubois, A., 2021. "Application of Artificial Neural Networks to photovoltaic fault detection and diagnosis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    11. Özdemir, Samed & Yavuzdoğan, Ahmet & Bilgilioğlu, Burhan Baha & Akbulut, Zeynep, 2023. "SPAN: An open-source plugin for photovoltaic potential estimation of individual roof segments using point cloud data," Renewable Energy, Elsevier, vol. 216(C).
    12. Sun, Tao & Shan, Ming & Rong, Xing & Yang, Xudong, 2022. "Estimating the spatial distribution of solar photovoltaic power generation potential on different types of rural rooftops using a deep learning network applied to satellite images," Applied Energy, Elsevier, vol. 315(C).
    13. Hu, Wei & Bradbury, Kyle & Malof, Jordan M. & Li, Boning & Huang, Bohao & Streltsov, Artem & Sydny Fujita, K. & Hoen, Ben, 2022. "What you get is not always what you see—pitfalls in solar array assessment using overhead imagery," Applied Energy, Elsevier, vol. 327(C).
    14. Qu, Jiaqi & Sun, Qiang & Qian, Zheng & Wei, Lu & Zareipour, Hamidreza, 2024. "Fault diagnosis for PV arrays considering dust impact based on transformed graphical features of characteristic curves and convolutional neural network with CBAM modules," Applied Energy, Elsevier, vol. 355(C).
    15. Qu, Jiaqi & Qian, Zheng & Pei, Yan & Wei, Lu & Zareipour, Hamidreza & Sun, Qiang, 2022. "An unsupervised hourly weather status pattern recognition and blending fitting model for PV system fault detection," Applied Energy, Elsevier, vol. 319(C).
    16. Song, Chenchen & Guo, Zhiling & Liu, Zhengguang & Hongyun, Zhang & Liu, Ran & Zhang, Haoran, 2024. "Application of photovoltaics on different types of land in China: Opportunities, status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    17. Ren, Haoshan & Xu, Chengliang & Ma, Zhenjun & Sun, Yongjun, 2022. "A novel 3D-geographic information system and deep learning integrated approach for high-accuracy building rooftop solar energy potential characterization of high-density cities," Applied Energy, Elsevier, vol. 306(PA).
    18. Molnár, Gergely & Cabeza, Luisa F. & Chatterjee, Souran & Ürge-Vorsatz, Diana, 2024. "Modelling the building-related photovoltaic power production potential in the light of the EU's Solar Rooftop Initiative," Applied Energy, Elsevier, vol. 360(C).
    19. Psiloglou, B.E. & Kambezidis, H.D. & Kaskaoutis, D.G. & Karagiannis, D. & Polo, J.M., 2020. "Comparison between MRM simulations, CAMS and PVGIS databases with measured solar radiation components at the Methoni station, Greece," Renewable Energy, Elsevier, vol. 146(C), pages 1372-1391.
    20. Zhixin Zhang & Min Chen & Teng Zhong & Rui Zhu & Zhen Qian & Fan Zhang & Yue Yang & Kai Zhang & Paolo Santi & Kaicun Wang & Yingxia Pu & Lixin Tian & Guonian Lü & Jinyue Yan, 2023. "Carbon mitigation potential afforded by rooftop photovoltaic in China," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:333:y:2023:i:c:s0306261922018360. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.