IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i2p102-d63737.html
   My bibliography  Save this article

Analysis of the Potential for Use of Floating Photovoltaic Systems on Mine Pit Lakes: Case Study at the Ssangyong Open-Pit Limestone Mine in Korea

Author

Listed:
  • Jinyoung Song

    (Department of Energy Resources Engineering, Pukyong National University, Busan 608-737, Korea)

  • Yosoon Choi

    (Department of Energy Resources Engineering, Pukyong National University, Busan 608-737, Korea)

Abstract

Recently, the mining industry has introduced renewable energy technologies to resolve power supply problems at mines operating in polar regions or other remote areas, and to foster substitute industries, able to benefit from abandoned sites of exhausted mines. However, little attention has been paid to the potential placement of floating photovoltaic (PV) systems operated on mine pit lakes because it was assumed that the topographic characteristics of open-pit mines are unsuitable for installing any type of PV systems. This study analyzed the potential of floating PV systems on a mine pit lake in Korea to break this misconception. Using a fish-eye lens camera and digital elevation models, a shading analysis was performed to identify the area suitable for installing a floating PV system. The layout of the floating PV system was designed in consideration of the optimal tilt angle and array spacing of the PV panels. The System Advisor Model (SAM) by National Renewable Energy Laboratory, USA, was used to conduct energy simulations based on weather data and the system design. The results indicated that the proposed PV system could generate 971.57 MWh/year. The economic analysis (accounting for discount rate and a 20-year operational lifetime) showed that the net present value would be $897,000 USD, and a payback period of about 12.3 years. Therefore, we could know that the economic effect of the floating PV system on the mine pit lake is relatively higher than that of PV systems in the other abandoned mines in Korea. The annual reduction of greenhouse gas emissions was analyzed and found to be 471.21 tCO 2 /year, which is twice the reduction effect achieved by forest restoration of an abandoned mine site. The economic feasibility of a floating PV system on a pit lake of an abandoned mine was thus established, and may be considered an efficient reuse option for abandoned mines.

Suggested Citation

  • Jinyoung Song & Yosoon Choi, 2016. "Analysis of the Potential for Use of Floating Photovoltaic Systems on Mine Pit Lakes: Case Study at the Ssangyong Open-Pit Limestone Mine in Korea," Energies, MDPI, vol. 9(2), pages 1-13, February.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:2:p:102-:d:63737
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/2/102/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/2/102/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bhuiyan, M.M.H. & Ali Asgar, M., 2003. "Sizing of a stand-alone photovoltaic power system at Dhaka," Renewable Energy, Elsevier, vol. 28(6), pages 929-938.
    2. Song, Jinyoung & Choi, Yosoon, 2015. "Design of photovoltaic systems to power aerators for natural purification of acid mine drainage," Renewable Energy, Elsevier, vol. 83(C), pages 759-766.
    3. Hernandez, R.R. & Easter, S.B. & Murphy-Mariscal, M.L. & Maestre, F.T. & Tavassoli, M. & Allen, E.B. & Barrows, C.W. & Belnap, J. & Ochoa-Hueso, R. & Ravi, S. & Allen, M.F., 2014. "Environmental impacts of utility-scale solar energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 766-779.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yosoon Choi & Jinyoung Song, 2016. "Sustainable Development of Abandoned Mine Areas Using Renewable Energy Systems: A Case Study of the Photovoltaic Potential Assessment at the Tailings Dam of Abandoned Sangdong Mine, Korea," Sustainability, MDPI, vol. 8(12), pages 1-12, December.
    2. Vivar, M. & H, Sharon & Fuentes, M., 2024. "Photovoltaic system adoption in water related technologies – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    3. Kannan, Nadarajah & Vakeesan, Divagar, 2016. "Solar energy for future world: - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1092-1105.
    4. Moroni, Stefano & Antoniucci, Valentina & Bisello, Adriano, 2016. "Energy sprawl, land taking and distributed generation: towards a multi-layered density," Energy Policy, Elsevier, vol. 98(C), pages 266-273.
    5. Gottschamer, L. & Zhang, Q., 2016. "Interactions of factors impacting implementation and sustainability of renewable energy sourced electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 164-174.
    6. Hori, Keiko & Matsui, Takanori & Hasuike, Takashi & Fukui, Ken-ichi & Machimura, Takashi, 2016. "Development and application of the renewable energy regional optimization utility tool for environmental sustainability: REROUTES," Renewable Energy, Elsevier, vol. 93(C), pages 548-561.
    7. Frate, Claudio Albuquerque & Brannstrom, Christian, 2017. "Stakeholder subjectivities regarding barriers and drivers to the introduction of utility-scale solar photovoltaic power in Brazil," Energy Policy, Elsevier, vol. 111(C), pages 346-352.
    8. Sward, Jeffrey A. & Nilson, Roberta S. & Katkar, Venktesh V. & Stedman, Richard C. & Kay, David L. & Ifft, Jennifer E. & Zhang, K. Max, 2021. "Integrating social considerations in multicriteria decision analysis for utility-scale solar photovoltaic siting," Applied Energy, Elsevier, vol. 288(C).
    9. Li, Peidu & Gao, Xiaoqing & Li, Zhenchao & Ye, Tiange & Zhou, Xiyin, 2022. "Effects of fishery complementary photovoltaic power plant on near-surface meteorology and energy balance," Renewable Energy, Elsevier, vol. 187(C), pages 698-709.
    10. Prehoda, Emily W. & Pearce, Joshua M., 2017. "Potential lives saved by replacing coal with solar photovoltaic electricity production in the U.S," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 710-715.
    11. Aktas, Ilter Sahin, 2024. "Techno-economic feasibility analysis and optimisation of on/off-grid wind-biogas-CHP hybrid energy system for the electrification of university campus: A case study," Renewable Energy, Elsevier, vol. 237(PC).
    12. Punia Sindhu, Sonal & Nehra, Vijay & Luthra, Sunil, 2016. "Recognition and prioritization of challenges in growth of solar energy using analytical hierarchy process: Indian outlook," Energy, Elsevier, vol. 100(C), pages 332-348.
    13. Hanbin Liu & Yujing Yang & Wenting Jiao & Shaobin Wang & Fangqin Cheng, 2022. "A New Assessment Method for the Redevelopment of Closed Coal Mine—A Case Study in Shanxi Province in China," Sustainability, MDPI, vol. 14(15), pages 1-19, August.
    14. Teodoro Semeraro & Roberta Aretano & Amilcare Barca & Alessandro Pomes & Cecilia Del Giudice & Elisa Gatto & Marcello Lenucci & Riccardo Buccolieri & Rohinton Emmanuel & Zhi Gao & Alessandra Scognamig, 2020. "A Conceptual Framework to Design Green Infrastructure: Ecosystem Services as an Opportunity for Creating Shared Value in Ground Photovoltaic Systems," Land, MDPI, vol. 9(8), pages 1-28, July.
    15. Walston, Leroy J. & Rollins, Katherine E. & LaGory, Kirk E. & Smith, Karen P. & Meyers, Stephanie A., 2016. "A preliminary assessment of avian mortality at utility-scale solar energy facilities in the United States," Renewable Energy, Elsevier, vol. 92(C), pages 405-414.
    16. Golberg, Alexander, 2015. "Environmental exergonomics for sustainable design and analysis of energy systems," Energy, Elsevier, vol. 88(C), pages 314-321.
    17. Shahryar Jafarinejad & Rebecca R. Hernandez & Sajjad Bigham & Bryan S. Beckingham, 2023. "The Intertwined Renewable Energy–Water–Environment (REWE) Nexus Challenges and Opportunities: A Case Study of California," Sustainability, MDPI, vol. 15(13), pages 1-16, July.
    18. Khatib, Tamer & Mohamed, Azah & Sopian, K., 2013. "A review of photovoltaic systems size optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 454-465.
    19. Exley, G. & Hernandez, R.R. & Page, T. & Chipps, M. & Gambro, S. & Hersey, M. & Lake, R. & Zoannou, K.-S. & Armstrong, A., 2021. "Scientific and stakeholder evidence-based assessment: Ecosystem response to floating solar photovoltaics and implications for sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    20. Najafi, G. & Ghobadian, B. & Mamat, R. & Yusaf, T. & Azmi, W.H., 2015. "Solar energy in Iran: Current state and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 931-942.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:2:p:102-:d:63737. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.