IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v397y2025ics0306261925009730.html

Effects of clouds, aerosols and shadows on solar energy potential on urban rooftops using earth observation data and digital surface models

Author

Listed:
  • Hou, Xinyuan
  • Papachristopoulou, Kyriakoula
  • Saint-Drenan, Yves-Marie
  • Kosmopoulos, Panagiotis G.
  • Psiloglou, Basil E.
  • Kazadzis, Stelios

Abstract

This study combines high-frequency Earth observation data (Copernicus Atmosphere Monitoring Service) and very-high-resolution digital surface models, to explore the effects of clouds and aerosols in conjunction with shadows on solar energy potential on urban rooftops. We focus on the assessment of two municipalities in the city of Athens (Greece). Besides quantifying the shadowing effect from the adjacent buildings and constructions, the previously scarcely considered effects of clouds and aerosols on the solar radiation availability on the rooftops and their inter-annual variability are investigated. Important results of this investigation include that the atmosphere and building shadows cause monthly 30–60 kWhm−2 of solar radiation loss on urban rooftops in Athens. The mean monthly cloud effect ranges from 5 % in summer to >30 % in winter; the mean aerosol effect has its peak of 8 % in August and <3 % in winter months; shadows account for 5 %–10 % of the solar radiation reduction in winter, but <5 % in other seasons. Compared to clean-sky conditions, the shadowing effect on radiation is suppressed when clouds or aerosols are present. All-sky shadowing effect on city-center rooftops on average stays stably <10 % during the ten-year span from 2012 to 2021, and mostly <5 % from April to October. The main contribution of our findings is the demonstration of using radiative transfer modeling in quantifying atmospheric and building shadowing effects on urban rooftop solar energy systems.

Suggested Citation

  • Hou, Xinyuan & Papachristopoulou, Kyriakoula & Saint-Drenan, Yves-Marie & Kosmopoulos, Panagiotis G. & Psiloglou, Basil E. & Kazadzis, Stelios, 2025. "Effects of clouds, aerosols and shadows on solar energy potential on urban rooftops using earth observation data and digital surface models," Applied Energy, Elsevier, vol. 397(C).
  • Handle: RePEc:eee:appene:v:397:y:2025:i:c:s0306261925009730
    DOI: 10.1016/j.apenergy.2025.126243
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925009730
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.126243?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Zhu, Rui & Wong, Man Sing & You, Linlin & Santi, Paolo & Nichol, Janet & Ho, Hung Chak & Lu, Lin & Ratti, Carlo, 2020. "The effect of urban morphology on the solar capacity of three-dimensional cities," Renewable Energy, Elsevier, vol. 153(C), pages 1111-1126.
    2. Assouline, Dan & Mohajeri, Nahid & Scartezzini, Jean-Louis, 2018. "Large-scale rooftop solar photovoltaic technical potential estimation using Random Forests," Applied Energy, Elsevier, vol. 217(C), pages 189-211.
    3. Ren, Haoshan & Xu, Chengliang & Ma, Zhenjun & Sun, Yongjun, 2022. "A novel 3D-geographic information system and deep learning integrated approach for high-accuracy building rooftop solar energy potential characterization of high-density cities," Applied Energy, Elsevier, vol. 306(PA).
    4. Chen, Qi & Li, Xinyuan & Zhang, Zhengjia & Zhou, Chao & Guo, Zhiling & Liu, Zhengguang & Zhang, Haoran, 2023. "Remote sensing of photovoltaic scenarios: Techniques, applications and future directions," Applied Energy, Elsevier, vol. 333(C).
    5. Huang, Zhaojian & Mendis, Thushini & Xu, Shen, 2019. "Urban solar utilization potential mapping via deep learning technology: A case study of Wuhan, China," Applied Energy, Elsevier, vol. 250(C), pages 283-291.
    6. Miguel Centeno Brito & Paula Redweik & Cristina Catita & Sara Freitas & Miguel Santos, 2019. "3D Solar Potential in the Urban Environment: A Case Study in Lisbon," Energies, MDPI, vol. 12(18), pages 1-13, September.
    7. Andres Calcabrini & Hesan Ziar & Olindo Isabella & Miro Zeman, 2019. "A simplified skyline-based method for estimating the annual solar energy potential in urban environments," Nature Energy, Nature, vol. 4(3), pages 206-215, March.
    8. Ren, Haoshan & Ma, Zhenjun & Chan, Antoni B. & Sun, Yongjun, 2023. "Optimal planning of municipal-scale distributed rooftop photovoltaic systems with maximized solar energy generation under constraints in high-density cities," Energy, Elsevier, vol. 263(PA).
    9. Cheng, Liang & Zhang, Fangli & Li, Shuyi & Mao, Junya & Xu, Hao & Ju, Weimin & Liu, Xiaoqiang & Wu, Jie & Min, Kaifu & Zhang, Xuedong & Li, Manchun, 2020. "Solar energy potential of urban buildings in 10 cities of China," Energy, Elsevier, vol. 196(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Asfafaw Haileselassie Tesfay & Amaha Kidanu Atsbeha & Mesele Hayelom Hailu, 2025. "Solar Resource Mapping of the Tigray Region, Ethiopia, Based on Satellite and Meteorological Data," Energies, MDPI, vol. 18(19), pages 1-18, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Drozd, Paweł & Kapica, Jacek & Jurasz, Jakub & Dąbek, Paweł, 2025. "Evaluating cities' solar potential using geographic information systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 209(C).
    2. Liu, Jiang & Wu, Qifeng & Lin, Zhipeng & Shi, Huijie & Wen, Shaoyang & Wu, Qiaoyu & Zhang, Junxue & Peng, Changhai, 2023. "A novel approach for assessing rooftop-and-facade solar photovoltaic potential in rural areas using three-dimensional (3D) building models constructed with GIS," Energy, Elsevier, vol. 282(C).
    3. Li, Qingyu & Krapf, Sebastian & Mou, Lichao & Shi, Yilei & Zhu, Xiao Xiang, 2024. "Deep learning-based framework for city-scale rooftop solar potential estimation by considering roof superstructures," Applied Energy, Elsevier, vol. 374(C).
    4. Lodhi, Muhammad Kamran & Tan, Yumin & Wang, Xiaolu & Masum, Syed Muhammad & Nouman, Khan Muhammad & Ullah, Nasim, 2024. "Harnessing rooftop solar photovoltaic potential in Islamabad, Pakistan: A remote sensing and deep learning approach," Energy, Elsevier, vol. 304(C).
    5. Jiang, Hou & Yao, Ling & Lu, Ning & Qin, Jun & Zhang, Xiaotong & Liu, Tang & Zhang, Xingxing & Zhou, Chenghu, 2024. "Exploring the optimization of rooftop photovoltaic scale and spatial layout under curtailment constraints," Energy, Elsevier, vol. 293(C).
    6. Xu, Jian & Guo, Zhiling & Yu, Qing & Dong, Kechuan & Tan, Hongjun & Zhang, Haoran & Yan, Jinyue, 2025. "Spatiotemporal feature encoded deep learning method for rooftop PV potential assessment," Applied Energy, Elsevier, vol. 394(C).
    7. Dalibor Dobrilovic & Jasmina Pekez & Eleonora Desnica & Ljiljana Radovanovic & Ivan Palinkas & Milica Mazalica & Luka Djordjević & Sinisa Mihajlovic, 2023. "Data Acquisition for Estimating Energy-Efficient Solar-Powered Sensor Node Performance for Usage in Industrial IoT," Sustainability, MDPI, vol. 15(9), pages 1-22, April.
    8. Sebastian Krapf & Nils Kemmerzell & Syed Khawaja Haseeb Uddin & Manuel Hack Vázquez & Fabian Netzler & Markus Lienkamp, 2021. "Towards Scalable Economic Photovoltaic Potential Analysis Using Aerial Images and Deep Learning," Energies, MDPI, vol. 14(13), pages 1-22, June.
    9. Ni, Pingan & Lei, Fuming & Zheng, Hanjie & Song, Junkang & Yue, Yingjun & Zhang, Xue & Yan, Zengfeng & Qin, Guojin, 2025. "Potential and challenges of urban building surface solar energy utilization in solar resource non-enriched areas, China," Energy, Elsevier, vol. 332(C).
    10. Wei, Tianxi & Zhang, Yi & Zhang, Yuhang & Miao, Rui & Kang, Jian & Qi, He, 2024. "City-scale roof-top photovoltaic deployment planning," Applied Energy, Elsevier, vol. 368(C).
    11. Tian, Shuai & Yang, Guoqiang & Du, Sihong & Zhuang, Dian & Zhu, Ke & Zhou, Xin & Jin, Xing & Ye, Yu & Li, Peixian & Shi, Xing, 2024. "An innovative method for evaluating the urban roof photovoltaic potential based on open-source satellite images," Renewable Energy, Elsevier, vol. 224(C).
    12. Yu, Zhe & Chen, Cuiying & Lou, Duo & Jiang, Jingjing & Ye, Bin, 2025. "Energy-economy-environment evaluation of building-integrated photovoltaic considering facade factors for representative megacities in China," Applied Energy, Elsevier, vol. 389(C).
    13. Carlos Beltran-Velamazan & Marta Monzón-Chavarrías & Belinda López-Mesa, 2021. "A Method for the Automated Construction of 3D Models of Cities and Neighborhoods from Official Cadaster Data for Solar Analysis," Sustainability, MDPI, vol. 13(11), pages 1-19, May.
    14. Xie, Yang & Zheng, Jianyong & Mei, Fei & Taylor, Gareth & Gao, Ang, 2025. "An efficient approach for regional photovoltaic power forecasting optimization based on texture features from satellite images and transfer learning," Applied Energy, Elsevier, vol. 385(C).
    15. Sredenšek, Klemen & Štumberger, Bojan & Hadžiselimović, Miralem & Mavsar, Primož & Seme, Sebastijan, 2022. "Physical, geographical, technical, and economic potential for the optimal configuration of photovoltaic systems using a digital surface model and optimization method," Energy, Elsevier, vol. 242(C).
    16. Mao, Hongzhi & Chen, Xie & Luo, Yongqiang & Deng, Jie & Tian, Zhiyong & Yu, Jinghua & Xiao, Yimin & Fan, Jianhua, 2023. "Advances and prospects on estimating solar photovoltaic installation capacity and potential based on satellite and aerial images," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    17. Enrique Fuster-Palop & Carlos Prades-Gil & Ximo Masip & J. D. Viana-Fons & Jorge Payá, 2023. "Techno-Economic Potential of Urban Photovoltaics: Comparison of Net Billing and Net Metering in a Mediterranean Municipality," Energies, MDPI, vol. 16(8), pages 1-32, April.
    18. Zhang, Chen & Li, Zhixin & Jiang, Haihua & Luo, Yongqiang & Xu, Shen, 2021. "Deep learning method for evaluating photovoltaic potential of urban land-use: A case study of Wuhan, China," Applied Energy, Elsevier, vol. 283(C).
    19. Chen, Zhe & Yang, Bisheng & Zhu, Rui & Dong, Zhen, 2024. "City-scale solar PV potential estimation on 3D buildings using multi-source RS data: A case study in Wuhan, China," Applied Energy, Elsevier, vol. 359(C).
    20. Özdemir, Samed & Yavuzdoğan, Ahmet & Bilgilioğlu, Burhan Baha & Akbulut, Zeynep, 2023. "SPAN: An open-source plugin for photovoltaic potential estimation of individual roof segments using point cloud data," Renewable Energy, Elsevier, vol. 216(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:397:y:2025:i:c:s0306261925009730. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.