IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v293y2024ics0360544224004936.html
   My bibliography  Save this article

Exploring the optimization of rooftop photovoltaic scale and spatial layout under curtailment constraints

Author

Listed:
  • Jiang, Hou
  • Yao, Ling
  • Lu, Ning
  • Qin, Jun
  • Zhang, Xiaotong
  • Liu, Tang
  • Zhang, Xingxing
  • Zhou, Chenghu

Abstract

Developing rooftop photovoltaics has become an important pathway towards carbon neutrality globally, but how to rationally implement rooftop photovoltaic development has not been investigated. This study presents a technical framework for optimizing the development scale and spatial layout of rooftop solar installations based on high-resolution generation simulation and load-oriented electricity dispatch. It is demonstrated that with the gradual expansion of rooftop development, its penetration in the electric grid grows at a decelerated speed, but the accompanying curtailment increases at an accelerated rate. Both regional sub-grid integration and improved grid flexibility marginally increase the development scale under curtailment constraint, while energy storage and trans-regional power transmission allow for significantly larger scales, thus elevating the penetration of photovoltaic generation to higher levels. The analysis reveals that the development scale should be optimized to account for regional differences in load characteristics. The optimal layout that maximizes photovoltaic penetration while minimizes photovoltaic curtailment varies with the grid flexibility and storage capacity. In China, at least 90% grid flexibility and 8–12 hours of storage capacity are required to realize 2/3 photovoltaic penetration and meet a 5% curtailment constraint. This study provides guidance for rooftop photovoltaic development in China and has implications for variable energy management in the community.

Suggested Citation

  • Jiang, Hou & Yao, Ling & Lu, Ning & Qin, Jun & Zhang, Xiaotong & Liu, Tang & Zhang, Xingxing & Zhou, Chenghu, 2024. "Exploring the optimization of rooftop photovoltaic scale and spatial layout under curtailment constraints," Energy, Elsevier, vol. 293(C).
  • Handle: RePEc:eee:energy:v:293:y:2024:i:c:s0360544224004936
    DOI: 10.1016/j.energy.2024.130721
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224004936
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130721?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:293:y:2024:i:c:s0360544224004936. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.