IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v129y2024ics0140988323007685.html
   My bibliography  Save this article

Consumer reaction to green subsidy phase-out in China: Evidence from the household photovoltaic industry

Author

Listed:
  • Liu, Diyi
  • Zou, Hongyang
  • Qiu, Yueming
  • Du, Huibin

Abstract

With the impending post-subsidy era, the Chinese government has initiated significant reductions in household photovoltaic (PV) subsidies. This policy change may have negative implications, such as the emergence of the “solar rush” phenomenon. This study aims to quantify the impact of the phase-out of photovoltaic generation subsidies on household electricity consumption in China. We collected electricity usage data from 3620 Chinese households, and our results indicate that the announcement of subsidy phase-out led to a larger rebound effect on total electricity consumption. Following the implementation of the subsidy phase-out, this effect gradually weakened, leading to a decrease in grid purchases. This finding suggests that households adjusted their electricity usage patterns to maximize revenue from solar electricity. In the long term, households are more inclined to generate revenue by selling solar electricity to grid companies during the daytime. This shift in behavior is expected to reshape their electricity usage habits over time. Our findings contribute new insights to the growing body of literature on household consumption and provide practical foundations for the renewable energy market and public policy development.

Suggested Citation

  • Liu, Diyi & Zou, Hongyang & Qiu, Yueming & Du, Huibin, 2024. "Consumer reaction to green subsidy phase-out in China: Evidence from the household photovoltaic industry," Energy Economics, Elsevier, vol. 129(C).
  • Handle: RePEc:eee:eneeco:v:129:y:2024:i:c:s0140988323007685
    DOI: 10.1016/j.eneco.2023.107270
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988323007685
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2023.107270?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Oberst, Christian A. & Schmitz, Hendrik & Madlener, Reinhard, 2019. "Are Prosumer Households That Much Different? Evidence From Stated Residential Energy Consumption in Germany," Ecological Economics, Elsevier, vol. 158(C), pages 101-115.
    2. Jinyue Yan & Ying Yang & Pietro Elia Campana & Jijiang He, 2019. "City-level analysis of subsidy-free solar photovoltaic electricity price, profits and grid parity in China," Nature Energy, Nature, vol. 4(8), pages 709-717, August.
    3. Keirstead, James, 2007. "Behavioural responses to photovoltaic systems in the UK domestic sector," Energy Policy, Elsevier, vol. 35(8), pages 4128-4141, August.
    4. Crago, Christine Lasco & Chernyakhovskiy, Ilya, 2017. "Are policy incentives for solar power effective? Evidence from residential installations in the Northeast," Journal of Environmental Economics and Management, Elsevier, vol. 81(C), pages 132-151.
    5. Kenneth A. Couch & Dana W. Placzek, 2010. "Earnings Losses of Displaced Workers Revisited," American Economic Review, American Economic Association, vol. 100(1), pages 572-589, March.
    6. Xiong, Yongqing & Yang, Xiaohan, 2016. "Government subsidies for the Chinese photovoltaic industry," Energy Policy, Elsevier, vol. 99(C), pages 111-119.
    7. Tang, Songlin & Zhou, Wenbing & Li, Xinjin & Chen, Yingchao & Zhang, Qian & Zhang, Xiliang, 2021. "Subsidy strategy for distributed photovoltaics: A combined view of cost change and economic development," Energy Economics, Elsevier, vol. 97(C).
    8. repec:bla:scandj:v:103:y:2001:i:1:p:165-84 is not listed on IDEAS
    9. Deng, Gary & Newton, Peter, 2017. "Assessing the impact of solar PV on domestic electricity consumption: Exploring the prospect of rebound effects," Energy Policy, Elsevier, vol. 110(C), pages 313-324.
    10. Severin Borenstein, 2017. "Private Net Benefits of Residential Solar PV: The Role of Electricity Tariffs, Tax Incentives, and Rebates," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 4(S1), pages 85-122.
    11. Liu, Diyi & Qi, Suntong & Xu, Tiantong, 2023. "In the post-subsidy era: How to encourage mere consumers to become prosumers when subsidy reduced?," Energy Policy, Elsevier, vol. 174(C).
    12. D'Adamo, Idiano & Gastaldi, Massimo & Morone, Piergiuseppe, 2022. "The impact of a subsidized tax deduction on residential solar photovoltaic-battery energy storage systems," Utilities Policy, Elsevier, vol. 75(C).
    13. Boccard, Nicolas & Gautier, Axel, 2021. "Solar rebound: The unintended consequences of subsidies," Energy Economics, Elsevier, vol. 100(C).
    14. Gerlagh, Reyer & Kverndokk, Snorre & Rosendahl, Knut Einar, 2014. "The optimal time path of clean energy R&D policy when patents have finite lifetime," Journal of Environmental Economics and Management, Elsevier, vol. 67(1), pages 2-19.
    15. Aydın, Erdal & Brounen, Dirk & Ergün, Ahmet, 2023. "The rebound effect of solar panel adoption: Evidence from Dutch households," Energy Economics, Elsevier, vol. 120(C).
    16. Greer K. Gosnell & Morgan D. Bazilian, 2021. "Changing behaviour is the key to solving the climate challenge," Nature Human Behaviour, Nature, vol. 5(3), pages 294-294, March.
    17. Karneyeva, Yuliya & Wüstenhagen, Rolf, 2017. "Solar feed-in tariffs in a post-grid parity world: The role of risk, investor diversity and business models," Energy Policy, Elsevier, vol. 106(C), pages 445-456.
    18. Brian C. Murray & Maureen L. Cropper & Francisco C. de la Chesnaye & John M. Reilly, 2014. "How Effective Are US Renewable Energy Subsidies in Cutting Greenhouse Gases?," American Economic Review, American Economic Association, vol. 104(5), pages 569-574, May.
    19. Jeon, Chanwoong & Lee, Jeongjin & Shin, Juneseuk, 2015. "Optimal subsidy estimation method using system dynamics and the real option model: Photovoltaic technology case," Applied Energy, Elsevier, vol. 142(C), pages 33-43.
    20. Lu, Qing & Yu, Hao & Zhao, Kangli & Leng, Yajun & Hou, Jianchao & Xie, Pinjie, 2019. "Residential demand response considering distributed PV consumption: A model based on China's PV policy," Energy, Elsevier, vol. 172(C), pages 443-456.
    21. Tyler Marghetis & Shahzeen Z. Attari & David Landy, 2019. "Simple interventions can correct misperceptions of home energy use," Nature Energy, Nature, vol. 4(10), pages 874-881, October.
    22. A. Greening, Lorna & Greene, David L. & Difiglio, Carmen, 2000. "Energy efficiency and consumption -- the rebound effect -- a survey," Energy Policy, Elsevier, vol. 28(6-7), pages 389-401, June.
    23. Koichiro Ito, 2014. "Do Consumers Respond to Marginal or Average Price? Evidence from Nonlinear Electricity Pricing," American Economic Review, American Economic Association, vol. 104(2), pages 537-563, February.
    24. Ouyang, Jinlong & Long, Enshen & Hokao, Kazunori, 2010. "Rebound effect in Chinese household energy efficiency and solution for mitigating it," Energy, Elsevier, vol. 35(12), pages 5269-5276.
    25. Qiu, Yueming & Kahn, Matthew E. & Xing, Bo, 2019. "Quantifying the rebound effects of residential solar panel adoption," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 310-341.
    26. Simshauser, Paul, 2016. "Distribution network prices and solar PV: Resolving rate instability and wealth transfers through demand tariffs," Energy Economics, Elsevier, vol. 54(C), pages 108-122.
    27. Yao, Xing & Fan, Ying & Zhu, Lei & Zhang, Xian, 2020. "Optimization of dynamic incentive for the deployment of carbon dioxide removal technology: A nonlinear dynamic approach combined with real options," Energy Economics, Elsevier, vol. 86(C).
    28. Haas, Reinhard & Biermayr, Peter, 2000. "The rebound effect for space heating Empirical evidence from Austria," Energy Policy, Elsevier, vol. 28(6-7), pages 403-410, June.
    29. Schwanitz, Valeria Jana & Piontek, Franziska & Bertram, Christoph & Luderer, Gunnar, 2014. "Long-term climate policy implications of phasing out fossil fuel subsidies," Energy Policy, Elsevier, vol. 67(C), pages 882-894.
    30. Runa Nesbakken, 2001. "Energy Consumption for Space Heating: A Discrete–Continuous Approach," Scandinavian Journal of Economics, Wiley Blackwell, vol. 103(1), pages 165-184, March.
    31. Chen, Jianhong & Zhang, Youlang & Li, Xinzhou & Sun, Bo & Liao, Qiangqiang & Tao, Yibin & Wang, Zhiqin, 2020. "Strategic integration of vehicle-to-home system with home distributed photovoltaic power generation in Shanghai," Applied Energy, Elsevier, vol. 263(C).
    32. Chi, Yuan-Ying & Wang, Yuan-Yuan & Xu, Jin-Hua, 2021. "Estimating the impact of the license plate quota policy for ICEVs on new energy vehicle adoption by using synthetic control method," Energy Policy, Elsevier, vol. 149(C).
    33. Chen, Zhisong & Ivan Su, Shong-Iee, 2019. "Social welfare maximization with the least subsidy: Photovoltaic supply chain equilibrium and coordination with fairness concern," Renewable Energy, Elsevier, vol. 132(C), pages 1332-1347.
    34. Zhan-Ming Chen, 2017. "Inventory and Distribution of Energy Subsidies of China," The Energy Journal, International Association for Energy Economics, vol. 0(KAPSARC S).
    35. Petrovich, Beatrice & Hille, Stefanie Lena & Wüstenhagen, Rolf, 2019. "Beauty and the budget: A segmentation of residential solar adopters," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.
    36. Best, Rohan & Burke, Paul J. & Nishitateno, Shuhei, 2019. "Evaluating the effectiveness of Australia's Small-scale Renewable Energy Scheme for rooftop solar," Energy Economics, Elsevier, vol. 84(C).
    37. Zhou, Dequn & Chong, Zhaotian & Wang, Qunwei, 2020. "What is the future policy for photovoltaic power applications in China? Lessons from the past," Resources Policy, Elsevier, vol. 65(C).
    38. Buchholz, Wolfgang & Dippl, Lisa & Eichenseer, Michael, 2019. "Subsidizing renewables as part of taking leadership in international climate policy: The German case," Energy Policy, Elsevier, vol. 129(C), pages 765-773.
    39. Andrea La Nauze, 2019. "Power from the People: Rooftop Solar and a Downward-Sloping Supply of Electricity," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 6(6), pages 1135-1168.
    40. Xu, Li & Zhang, Qin & Wang, Keying & Shi, Xunpeng, 2020. "Subsidies, loans, and companies' performance: evidence from China's photovoltaic industry," Applied Energy, Elsevier, vol. 260(C).
    41. Andor, Mark & Voss, Achim, 2016. "Optimal renewable-energy promotion: Capacity subsidies vs. generation subsidies," Resource and Energy Economics, Elsevier, vol. 45(C), pages 144-158.
    42. Wustenhagen, Rolf & Bilharz, Michael, 2006. "Green energy market development in Germany: effective public policy and emerging customer demand," Energy Policy, Elsevier, vol. 34(13), pages 1681-1696, September.
    43. Zhang, M.M. & Zhou, D.Q. & Zhou, P. & Chen, H.T., 2017. "Optimal design of subsidy to stimulate renewable energy investments: The case of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 873-883.
    44. O'Shaughnessy, Eric, 2022. "How policy has shaped the emerging solar photovoltaic installation industry," Energy Policy, Elsevier, vol. 163(C).
    45. Zhi, Qiang & Sun, Honghang & Li, Yanxi & Xu, Yurui & Su, Jun, 2014. "China’s solar photovoltaic policy: An analysis based on policy instruments," Applied Energy, Elsevier, vol. 129(C), pages 308-319.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ross C. Beppler & Daniel C. Matisoff & Matthew E. Oliver, 2023. "Electricity consumption changes following solar adoption: Testing for a solar rebound," Economic Inquiry, Western Economic Association International, vol. 61(1), pages 58-81, January.
    2. Frondel, Manuel & Kaestner, Kathrin & Sommer, Stephan & Vance, Colin, 2022. "Photovoltaics and the solar rebound: Evidence for Germany," Ruhr Economic Papers 954, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    3. Boccard, Nicolas & Gautier, Axel, 2021. "Solar rebound: The unintended consequences of subsidies," Energy Economics, Elsevier, vol. 100(C).
    4. Toroghi, Shahaboddin H. & Oliver, Matthew E., 2019. "Framework for estimation of the direct rebound effect for residential photovoltaic systems," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    5. Galvin, Ray & Dütschke, Elisabeth & Weiß, Julika, 2021. "A conceptual framework for understanding rebound effects with renewable electricity: A new challenge for decarbonizing the electricity sector," Renewable Energy, Elsevier, vol. 176(C), pages 423-432.
    6. Jiang, Hou & Yao, Ling & Lu, Ning & Qin, Jun & Zhang, Xiaotong & Liu, Tang & Zhang, Xingxing & Zhou, Chenghu, 2024. "Exploring the optimization of rooftop photovoltaic scale and spatial layout under curtailment constraints," Energy, Elsevier, vol. 293(C).
    7. Aydın, Erdal & Brounen, Dirk & Ergün, Ahmet, 2023. "The rebound effect of solar panel adoption: Evidence from Dutch households," Energy Economics, Elsevier, vol. 120(C).
    8. Peter M. Schwarz, Nathan Duma, and Ercument Camadan, 2023. "Compensating Solar Prosumers Using Buy-All, Sell-All as an Alternative to Net Metering and Net Purchasing: Total Use, Rebound, and Cross Subsidization," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    9. Frondel, Manuel & Kaestner, Kathrin & Sommer, Stephan & Vance, Colin, 2021. "Photovoltaics and the Solar Rebound: Evidence for Germany," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242356, Verein für Socialpolitik / German Economic Association.
    10. Qiu, Yueming (Lucy) & Wang, Yi David & Xing, Bo, 2021. "Grid impact of non-residential distributed solar energy and reduced air emissions: Empirical evidence from individual-consumer-level smart meter data," Applied Energy, Elsevier, vol. 290(C).
    11. Matthew E. Oliver & Juan Moreno-Cruz & Ross C. Beppler, 2019. "Microeconomics of the rebound effect for residential solar photovoltaic systems," CESifo Working Paper Series 7635, CESifo.
    12. Hache, Emmanuel & Leboullenger, Déborah & Mignon, Valérie, 2017. "Beyond average energy consumption in the French residential housing market: A household classification approach," Energy Policy, Elsevier, vol. 107(C), pages 82-95.
    13. Fikru, Mahelet G. & Gautier, Luis, 2023. "Consumption and production of cleaner energy by prosumers," Energy Economics, Elsevier, vol. 124(C).
    14. Lin, Boqiang & Liu, Xia, 2013. "Reform of refined oil product pricing mechanism and energy rebound effect for passenger transportation in China," Energy Policy, Elsevier, vol. 57(C), pages 329-337.
    15. Zhishuang Zhu & Hua Liao, 2019. "Do subsidies improve the financial performance of renewable energy companies? Evidence from China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 95(1), pages 241-256, January.
    16. Farrell, Niall, 2021. "The increasing cost of ignoring Coase: Inefficient electricity tariffs, welfare loss and welfare-reducing technological change," Energy Economics, Elsevier, vol. 97(C).
    17. Kim, Jae D. & Trevena, William, 2021. "Measuring the rebound effect: A case study of residential photovoltaic systems in San Diego," Utilities Policy, Elsevier, vol. 69(C).
    18. Qiu, Yueming & Kahn, Matthew E. & Xing, Bo, 2019. "Quantifying the rebound effects of residential solar panel adoption," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 310-341.
    19. Axel Gautier & Julien Jacqmin, 2020. "PV adoption: the role of distribution tariffs under net metering," Journal of Regulatory Economics, Springer, vol. 57(1), pages 53-73, February.
    20. Hong, Li & Liang, Dong & Di, Wang, 2013. "Economic and environmental gains of China's fossil energy subsidies reform: A rebound effect case study with EIMO model," Energy Policy, Elsevier, vol. 54(C), pages 335-342.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:129:y:2024:i:c:s0140988323007685. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.