IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v394y2025ics0306261925009018.html

Spatiotemporal feature encoded deep learning method for rooftop PV potential assessment

Author

Listed:
  • Xu, Jian
  • Guo, Zhiling
  • Yu, Qing
  • Dong, Kechuan
  • Tan, Hongjun
  • Zhang, Haoran
  • Yan, Jinyue

Abstract

Rooftop photovoltaic (PV) systems represent a promising solution for enhancing renewable energy utilization in urban landscapes. Accurate estimation of rooftop PV power generation potential is hindered by shading effects induced by complex urban morphology, which significantly reduce solar irradiance on rooftop surfaces and lead to prediction errors. Traditional shading simulation methods are computationally expensive, underscoring the need for a nuanced equilibrium between computational efficiency and assessment accuracy. In this study, we introduce an innovative deep learning framework that effectively encodes a diverse array of spatiotemporal data sources to accurately predict shadow casting and calculate rooftop PV potential. Specifically, utilizing physics-based ground truth, the incorporation of the U-Net network along with three-dimensional (3D) building specifics, solar resource data, and meteorological parameters enables us to make precise forecasts regarding temporal changes in rooftop shadow patterns. This not only enhances computational efficiency but also ensures a high level of precision in power generation predictions. Experimental assessments carried out in Futian District, Shenzhen, reveal that shading effects alone result in an average energy loss of 5.32 % across rooftops. Moreover, our framework demonstrates superior performance compared to physics-based models, achieving an average Mean Absolute Percentage Error (MAPE) of 2.85 % for annual energy generation potential and a mean Intersection over Union (mIoU) of 89.23 % for shading effect evaluation. In addition, the proposed framework achieves approximately 158× and 65× speedup over traditional ray-casting and optimized ray-tracing methods respectively, highlighting its strong suitability for large-scale urban energy evaluations. Our contributions encompass the development of a novel deep learning framework for rooftop PV potential assessment, enhanced computational efficiency in urban analyses, and a resilient generalization capability with high accuracy across various urban settings.

Suggested Citation

  • Xu, Jian & Guo, Zhiling & Yu, Qing & Dong, Kechuan & Tan, Hongjun & Zhang, Haoran & Yan, Jinyue, 2025. "Spatiotemporal feature encoded deep learning method for rooftop PV potential assessment," Applied Energy, Elsevier, vol. 394(C).
  • Handle: RePEc:eee:appene:v:394:y:2025:i:c:s0306261925009018
    DOI: 10.1016/j.apenergy.2025.126171
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925009018
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.126171?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Arias-Rosales, Andrés & LeDuc, Philip R., 2022. "Shadow modeling in urban environments for solar harvesting devices with freely defined positions and orientations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    2. Rezk, Hegazy & AL-Oran, Mazen & Gomaa, Mohamed R. & Tolba, Mohamed A. & Fathy, Ahmed & Abdelkareem, Mohammad Ali & Olabi, A.G. & El-Sayed, Abou Hashema M., 2019. "A novel statistical performance evaluation of most modern optimization-based global MPPT techniques for partially shaded PV system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    3. Wang, Tiantian & Wang, Yanhua & Wang, Ke & Fu, Sha & Ding, Li, 2024. "Five-dimensional assessment of China's centralized and distributed photovoltaic potential: From solar irradiation to CO2 mitigation," Applied Energy, Elsevier, vol. 356(C).
    4. Freitas, S. & Catita, C. & Redweik, P. & Brito, M.C., 2015. "Modelling solar potential in the urban environment: State-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 915-931.
    5. Siddharth Joshi & Shivika Mittal & Paul Holloway & Priyadarshi Ramprasad Shukla & Brian Ó Gallachóir & James Glynn, 2021. "High resolution global spatiotemporal assessment of rooftop solar photovoltaics potential for renewable electricity generation," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    6. Kosmopoulos, Panagiotis & Dhake, Harshal & Kartoudi, Danai & Tsavalos, Anastasios & Koutsantoni, Pelagia & Katranitsas, Apostolos & Lavdakis, Nikolaos & Mengou, Eftihia & Kashyap, Yashwant, 2024. "Ray-Tracing modeling for urban photovoltaic energy planning and management," Applied Energy, Elsevier, vol. 369(C).
    7. Zhixin Zhang & Min Chen & Teng Zhong & Rui Zhu & Zhen Qian & Fan Zhang & Yue Yang & Kai Zhang & Paolo Santi & Kaicun Wang & Yingxia Pu & Lixin Tian & Guonian Lü & Jinyue Yan, 2023. "Carbon mitigation potential afforded by rooftop photovoltaic in China," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Sengupta, Manajit & Xie, Yu & Lopez, Anthony & Habte, Aron & Maclaurin, Galen & Shelby, James, 2018. "The National Solar Radiation Data Base (NSRDB)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 51-60.
    9. Andres Calcabrini & Hesan Ziar & Olindo Isabella & Miro Zeman, 2019. "A simplified skyline-based method for estimating the annual solar energy potential in urban environments," Nature Energy, Nature, vol. 4(3), pages 206-215, March.
    10. Martínez-Rubio, A. & Sanz-Adan, F. & Santamaría-Peña, J. & Martínez, Araceli, 2016. "Evaluating solar irradiance over facades in high building cities, based on LiDAR technology," Applied Energy, Elsevier, vol. 183(C), pages 133-147.
    11. Xue, Liya & Liu, Junling & Lin, Xiaojing & Li, Mengyue & Kobashi, Takuro, 2024. "Assessing urban rooftop PV economics for regional deployment by integrating local socioeconomic, technological, and policy conditions," Applied Energy, Elsevier, vol. 353(PA).
    12. Mohajeri, Nahid & Assouline, Dan & Guiboud, Berenice & Bill, Andreas & Gudmundsson, Agust & Scartezzini, Jean-Louis, 2018. "A city-scale roof shape classification using machine learning for solar energy applications," Renewable Energy, Elsevier, vol. 121(C), pages 81-93.
    13. Martinopoulos, Georgios, 2020. "Are rooftop photovoltaic systems a sustainable solution for Europe? A life cycle impact assessment and cost analysis," Applied Energy, Elsevier, vol. 257(C).
    14. Gholami, Hassan & Røstvik, Harald Nils, 2020. "Economic analysis of BIPV systems as a building envelope material for building skins in Europe," Energy, Elsevier, vol. 204(C).
    15. Lee, Minhyun & Hong, Taehoon & Jeong, Kwangbok & Kim, Jimin, 2018. "A bottom-up approach for estimating the economic potential of the rooftop solar photovoltaic system considering the spatial and temporal diversity," Applied Energy, Elsevier, vol. 232(C), pages 640-656.
    16. Khan, Jibran & Arsalan, Mudassar Hassan, 2016. "Estimation of rooftop solar photovoltaic potential using geo-spatial techniques: A perspective from planned neighborhood of Karachi – Pakistan," Renewable Energy, Elsevier, vol. 90(C), pages 188-203.
    17. Zhu, Rui & Wong, Man Sing & You, Linlin & Santi, Paolo & Nichol, Janet & Ho, Hung Chak & Lu, Lin & Ratti, Carlo, 2020. "The effect of urban morphology on the solar capacity of three-dimensional cities," Renewable Energy, Elsevier, vol. 153(C), pages 1111-1126.
    18. Ren, Haoshan & Xu, Chengliang & Ma, Zhenjun & Sun, Yongjun, 2022. "A novel 3D-geographic information system and deep learning integrated approach for high-accuracy building rooftop solar energy potential characterization of high-density cities," Applied Energy, Elsevier, vol. 306(PA).
    19. Zhong, Teng & Zhang, Zhixin & Chen, Min & Zhang, Kai & Zhou, Zixuan & Zhu, Rui & Wang, Yijie & Lü, Guonian & Yan, Jinyue, 2021. "A city-scale estimation of rooftop solar photovoltaic potential based on deep learning," Applied Energy, Elsevier, vol. 298(C).
    20. Hong, Taehoon & Lee, Minhyun & Koo, Choongwan & Jeong, Kwangbok & Kim, Jimin, 2017. "Development of a method for estimating the rooftop solar photovoltaic (PV) potential by analyzing the available rooftop area using Hillshade analysis," Applied Energy, Elsevier, vol. 194(C), pages 320-332.
    21. Yildirim, Deniz & Büyüksalih, Gürcan & Şahin, Ahmet Duran, 2021. "Rooftop photovoltaic potential in Istanbul: Calculations based on LiDAR data, measurements and verifications," Applied Energy, Elsevier, vol. 304(C).
    22. Li, Qingyu & Krapf, Sebastian & Mou, Lichao & Shi, Yilei & Zhu, Xiao Xiang, 2024. "Deep learning-based framework for city-scale rooftop solar potential estimation by considering roof superstructures," Applied Energy, Elsevier, vol. 374(C).
    23. Gooding, James & Crook, Rolf & Tomlin, Alison S., 2015. "Modelling of roof geometries from low-resolution LiDAR data for city-scale solar energy applications using a neighbouring buildings method," Applied Energy, Elsevier, vol. 148(C), pages 93-104.
    24. Qi, Qingqing & Zhao, Jinghao & Tan, Zekun & Tao, Kejun & Zhang, Xiaoqing & Tian, Yajun, 2024. "Development assessment of regional rooftop photovoltaics based on remote sensing and deep learning," Applied Energy, Elsevier, vol. 375(C).
    25. Jiang, Hou & Zhang, Xiaotong & Yao, Ling & Lu, Ning & Qin, Jun & Liu, Tang & Zhou, Chenghu, 2023. "High-resolution analysis of rooftop photovoltaic potential based on hourly generation simulations and load profiles," Applied Energy, Elsevier, vol. 348(C).
    26. Gassar, Abdo Abdullah Ahmed & Cha, Seung Hyun, 2021. "Review of geographic information systems-based rooftop solar photovoltaic potential estimation approaches at urban scales," Applied Energy, Elsevier, vol. 291(C).
    27. Yang, Ying & Campana, Pietro Elia & Stridh, Bengt & Yan, Jinyue, 2020. "Potential analysis of roof-mounted solar photovoltaics in Sweden," Applied Energy, Elsevier, vol. 279(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Drozd, Paweł & Kapica, Jacek & Jurasz, Jakub & Dąbek, Paweł, 2025. "Evaluating cities' solar potential using geographic information systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 209(C).
    2. Ren, Haoshan & Xu, Chengliang & Ma, Zhenjun & Sun, Yongjun, 2022. "A novel 3D-geographic information system and deep learning integrated approach for high-accuracy building rooftop solar energy potential characterization of high-density cities," Applied Energy, Elsevier, vol. 306(PA).
    3. Li, Qingyu & Krapf, Sebastian & Mou, Lichao & Shi, Yilei & Zhu, Xiao Xiang, 2024. "Deep learning-based framework for city-scale rooftop solar potential estimation by considering roof superstructures," Applied Energy, Elsevier, vol. 374(C).
    4. Aslani, Mohammad & Seipel, Stefan, 2022. "Automatic identification of utilizable rooftop areas in digital surface models for photovoltaics potential assessment," Applied Energy, Elsevier, vol. 306(PA).
    5. Arias-Rosales, Andrés & LeDuc, Philip R., 2023. "Urban solar harvesting: The importance of diffuse shadows in complex environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    6. Liu, Jiang & Wu, Qifeng & Lin, Zhipeng & Shi, Huijie & Wen, Shaoyang & Wu, Qiaoyu & Zhang, Junxue & Peng, Changhai, 2023. "A novel approach for assessing rooftop-and-facade solar photovoltaic potential in rural areas using three-dimensional (3D) building models constructed with GIS," Energy, Elsevier, vol. 282(C).
    7. Sun, Tao & Shan, Ming & Rong, Xing & Yang, Xudong, 2022. "Estimating the spatial distribution of solar photovoltaic power generation potential on different types of rural rooftops using a deep learning network applied to satellite images," Applied Energy, Elsevier, vol. 315(C).
    8. Gassar, Abdo Abdullah Ahmed & Cha, Seung Hyun, 2021. "Review of geographic information systems-based rooftop solar photovoltaic potential estimation approaches at urban scales," Applied Energy, Elsevier, vol. 291(C).
    9. Wei, Tianxi & Zhang, Yi & Zhang, Yuhang & Miao, Rui & Kang, Jian & Qi, He, 2024. "City-scale roof-top photovoltaic deployment planning," Applied Energy, Elsevier, vol. 368(C).
    10. Jiang, Hou & Yao, Ling & Lu, Ning & Qin, Jun & Zhang, Xiaotong & Liu, Tang & Zhang, Xingxing & Zhou, Chenghu, 2024. "Exploring the optimization of rooftop photovoltaic scale and spatial layout under curtailment constraints," Energy, Elsevier, vol. 293(C).
    11. Yuan, Qiuling & Meng, Fanxin & Li, Weijiao & Lin, Jianyi & Puppim de Oliveira, Jose A. & Yang, Zhifeng, 2025. "Tradeoff optimization of urban roof systems oriented to food-water-energy nexus," Applied Energy, Elsevier, vol. 380(C).
    12. Job Taminiau & John Byrne & Jongkyu Kim & Min‐Hwi Kim & Jeongseok Seo, 2022. "Inferential‐ and measurement‐based methods to estimate rooftop “solar city” potential in megacity Seoul, South Korea," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(5), September.
    13. Liang, Hanwei & Shen, Jieling & Yip, Hin-Lap & Fang, Mandy Meng & Dong, Liang, 2024. "Unleashing the green potential: Assessing Hong Kong's building solar PV capacity," Applied Energy, Elsevier, vol. 369(C).
    14. Ding, Feng & Yang, Jianping & Zhou, Zan, 2023. "Economic profits and carbon reduction potential of photovoltaic power generation for China's high-speed railway infrastructure," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    15. Bódis, Katalin & Kougias, Ioannis & Jäger-Waldau, Arnulf & Taylor, Nigel & Szabó, Sándor, 2019. "A high-resolution geospatial assessment of the rooftop solar photovoltaic potential in the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    16. Mao, Hongzhi & Chen, Xie & Luo, Yongqiang & Deng, Jie & Tian, Zhiyong & Yu, Jinghua & Xiao, Yimin & Fan, Jianhua, 2023. "Advances and prospects on estimating solar photovoltaic installation capacity and potential based on satellite and aerial images," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    17. Zhu, Rui & Lau, Wing Sze & You, Linlin & Yan, Jinyue & Ratti, Carlo & Chen, Min & Wong, Man Sing & Qin, Zheng, 2024. "Multi-sourced data modelling of spatially heterogenous life-cycle carbon mitigation from installed rooftop photovoltaics: A case study in Singapore," Applied Energy, Elsevier, vol. 362(C).
    18. Özdemir, Samed & Yavuzdoğan, Ahmet & Bilgilioğlu, Burhan Baha & Akbulut, Zeynep, 2023. "SPAN: An open-source plugin for photovoltaic potential estimation of individual roof segments using point cloud data," Renewable Energy, Elsevier, vol. 216(C).
    19. Zhong, Teng & Zhang, Zhixin & Chen, Min & Zhang, Kai & Zhou, Zixuan & Zhu, Rui & Wang, Yijie & Lü, Guonian & Yan, Jinyue, 2021. "A city-scale estimation of rooftop solar photovoltaic potential based on deep learning," Applied Energy, Elsevier, vol. 298(C).
    20. Liao, Xuan & Zhu, Rui & Wong, Man Sing & Heo, Joon & Chan, P.W. & Kwok, Coco Yin Tung, 2023. "Fast and accurate estimation of solar irradiation on building rooftops in Hong Kong: A machine learning-based parameterization approach," Renewable Energy, Elsevier, vol. 216(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:394:y:2025:i:c:s0306261925009018. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.