IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v365y2024ics0306261924006949.html
   My bibliography  Save this article

PV Identifier: Extraction of small-scale distributed photovoltaics in complex environments from high spatial resolution remote sensing images

Author

Listed:
  • Lu, Ning
  • Li, Liang
  • Qin, Jun

Abstract

The precise location and size of distributed photovoltaics (PVs) is critical to infer the actual installed capacity and assess the remaining PV generation potential, and is therefore the cornerstone of strategic planning for distributed PV deployment. However, identifying small-scale distributed PVs in complex contexts from high spatial resolution remote sensing (HSRRS) images to obtain their information remains an issue. In this study, we propose an advanced deep learning model, called PV Identifier, to enhance the identification accuracy of small-scale PV systems from HSRRS images. PV Identifier uses a fine-grained feature layer (FFL) compatible with the size of PVs to improve the detection capability of the small-scale distributed PVs. At the same time, it effectively distinguishes between PVs and similar background using a novel semantic constraint module (SCM). We test PV Identifier on a distributed PV dataset in California. Experiments show that the inclusion of the FFL positively affects the model's sensitivity to small distributed PVs. Specifically, the PV Identifier with the FFL increases the Recall of identifying residential rooftop PVs by 1.9% compared to the model without the FFL. In addition, the integration of the SCM effectively improves the model's ability to locate residential rooftop PVs in complex environments, resulting in a 1.8% increase in the corresponding Precision. Compared to the four commonly used segmentation models, PV Identifier exhibits superior identification performance for residential rooftop PVs and commercial and industrial PVs, with an Intersection over Union (IoU) of 74.1% and 89.3%, respectively, which is at least 4.1% and 1.8% higher than other models. Overall, PV Identifier provides a viable solution to the problem of identifying small-scale distributed PV in complex backgrounds from HSRRS images.

Suggested Citation

  • Lu, Ning & Li, Liang & Qin, Jun, 2024. "PV Identifier: Extraction of small-scale distributed photovoltaics in complex environments from high spatial resolution remote sensing images," Applied Energy, Elsevier, vol. 365(C).
  • Handle: RePEc:eee:appene:v:365:y:2024:i:c:s0306261924006949
    DOI: 10.1016/j.apenergy.2024.123311
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924006949
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123311?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:365:y:2024:i:c:s0306261924006949. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.