IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-60264-9.html
   My bibliography  Save this article

Spatiotemporal assessment of renewable adequacy during diverse extreme weather events in China

Author

Listed:
  • Kai Jiang

    (North China Electric Power University)

  • Nian Liu

    (North China Electric Power University)

  • Kunyu Wang

    (North China Electric Power University)

  • Yubing Chen

    (North China Electric Power University)

  • Jianxiao Wang

    (Peking University)

  • Yu Liu

    (Peking University
    Peking University)

Abstract

China has one of the world’s largest wind and solar energy capacity worldwide; however, frequent extreme weather events remain major challenges to power systems. This study provides a nuanced examination of power balance issues on seven extreme weather types that occurred from 2020 to 2050. Utilizing an advanced metric for renewable adequacy and a comprehensive dataset comprising 1,089,891 alert records from 2843 counties, the results indicate that both adequacy surplus and deficit coexist in power systems under extreme weather conditions. In 2020, extreme weather led to a reduction in renewable energy by 31.79 TWh. Projections indicate this could rise to 263.61 TWh by 2050, equivalent to the combined annual electricity consumption in 2020 of Beijing and Shanghai, China’s two largest cities. An extensive analysis that includes 4 evolutionary paths and 45 load conditions suggests that the average demand for provincial flexibility during extreme weather is projected to peak at 11.03 GW in 2050.

Suggested Citation

  • Kai Jiang & Nian Liu & Kunyu Wang & Yubing Chen & Jianxiao Wang & Yu Liu, 2025. "Spatiotemporal assessment of renewable adequacy during diverse extreme weather events in China," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60264-9
    DOI: 10.1038/s41467-025-60264-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-60264-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-60264-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bramer, L.M. & Rounds, J. & Burleyson, C.D. & Fortin, D. & Hathaway, J. & Rice, J. & Kraucunas, I., 2017. "Evaluating penalized logistic regression models to predict Heat-Related Electric grid stress days," Applied Energy, Elsevier, vol. 205(C), pages 1408-1418.
    2. Laibao Liu & Gang He & Mengxi Wu & Gang Liu & Haoran Zhang & Ying Chen & Jiashu Shen & Shuangcheng Li, 2023. "Climate change impacts on planned supply–demand match in global wind and solar energy systems," Nature Energy, Nature, vol. 8(8), pages 870-880, August.
    3. He, Gang & Lin, Jiang & Sifuentes, Froylan & Liu, Xu & Abhyankar, Nikit & Phadke, Amol, 2020. "Author Correction: Rapid cost decrease of renewables and storage accelerates the decarbonization of China’s power system," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt11x8b9hc, Department of Agricultural & Resource Economics, UC Berkeley.
    4. Gang He & Jiang Lin & Froylan Sifuentes & Xu Liu & Nikit Abhyankar & Amol Phadke, 2020. "Rapid cost decrease of renewables and storage accelerates the decarbonization of China’s power system," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    5. Peter Berrill & Eric J. H. Wilson & Janet L. Reyna & Anthony D. Fontanini & Edgar G. Hertwich, 2022. "Author Correction: Decarbonization pathways for the residential sector in the United States," Nature Climate Change, Nature, vol. 12(11), pages 1068-1068, November.
    6. Chen, Xie & Zhou, Chaohui & Tian, Zhiyong & Mao, Hongzhi & Luo, Yongqiang & Sun, Deyu & Fan, Jianhua & Jiang, Liguang & Deng, Jie & Rosen, Marc A., 2023. "Different photovoltaic power potential variations in East and West China," Applied Energy, Elsevier, vol. 351(C).
    7. Zhenyu Zhuo & Ershun Du & Ning Zhang & Chris P. Nielsen & Xi Lu & Jinyu Xiao & Jiawei Wu & Chongqing Kang, 2022. "Cost increase in the electricity supply to achieve carbon neutrality in China," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    8. Iain Staffell & Stefan Pfenninger & Nathan Johnson, 2023. "A global model of hourly space heating and cooling demand at multiple spatial scales," Nature Energy, Nature, vol. 8(12), pages 1328-1344, December.
    9. Peter Berrill & Eric J. H. Wilson & Janet L. Reyna & Anthony D. Fontanini & Edgar G. Hertwich, 2022. "Decarbonization pathways for the residential sector in the United States," Nature Climate Change, Nature, vol. 12(8), pages 712-718, August.
    10. Juan P. Montoya-Rincon & Said A. Mejia-Manrique & Shams Azad & Masoud Ghandehari & Eric W. Harmsen & Reza Khanbilvardi & Jorge E. Gonzalez-Cruz, 2023. "A socio-technical approach for the assessment of critical infrastructure system vulnerability in extreme weather events," Nature Energy, Nature, vol. 8(9), pages 1002-1012, September.
    11. Ryna Yiyun Cui & Nathan Hultman & Diyang Cui & Haewon McJeon & Sha Yu & Morgan R. Edwards & Arijit Sen & Kaihui Song & Christina Bowman & Leon Clarke & Junjie Kang & Jiehong Lou & Fuqiang Yang & Jiaha, 2021. "A plant-by-plant strategy for high-ambition coal power phaseout in China," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    12. E. M. Fischer & S. Sippel & R. Knutti, 2021. "Increasing probability of record-shattering climate extremes," Nature Climate Change, Nature, vol. 11(8), pages 689-695, August.
    13. A. T. D. Perera & Vahid M. Nik & Deliang Chen & Jean-Louis Scartezzini & Tianzhen Hong, 2020. "Quantifying the impacts of climate change and extreme climate events on energy systems," Nature Energy, Nature, vol. 5(2), pages 150-159, February.
    14. Hou, Qingchun & Zhang, Ning & Du, Ershun & Miao, Miao & Peng, Fei & Kang, Chongqing, 2019. "Probabilistic duck curve in high PV penetration power system: Concept, modeling, and empirical analysis in China," Applied Energy, Elsevier, vol. 242(C), pages 205-215.
    15. Thomas Longden & Simon Quilty & Brad Riley & Lee V. White & Michael Klerck & Vanessa Napaltjari Davis & Norman Frank Jupurrurla, 2022. "Energy insecurity during temperature extremes in remote Australia," Nature Energy, Nature, vol. 7(1), pages 43-54, January.
    16. Gang He & Jiang Lin & Froylan Sifuentes & Xu Liu & Nikit Abhyankar & Amol Phadke, 2020. "Author Correction: Rapid cost decrease of renewables and storage accelerates the decarbonization of China’s power system," Nature Communications, Nature, vol. 11(1), pages 1-1, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yun-Long & Kang, Jia-Ning & Liu, Lan-Cui & Wei, Yi-Ming, 2024. "Unveiling the evolution and future prospects: A comprehensive review of low-carbon transition in the coal power industry," Applied Energy, Elsevier, vol. 371(C).
    2. Kuang, Zhonghong & Chen, Qi & Yu, Yang, 2022. "Assessing the CO2-emission risk due to wind-energy uncertainty," Applied Energy, Elsevier, vol. 310(C).
    3. Kangxin An & Xinzhu Zheng & Jianxiang Shen & Canyang Xie & Can Wang & Wenjia Cai & Chujie Bu, 2025. "Repositioning coal power to accelerate net-zero transition of China’s power system," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    4. Jing-Li Fan & Zezheng Li & Xi Huang & Kai Li & Xian Zhang & Xi Lu & Jianzhong Wu & Klaus Hubacek & Bo Shen, 2023. "A net-zero emissions strategy for China’s power sector using carbon-capture utilization and storage," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    5. Yao, En-jian & Zhang, Tian-yu & Wang, David Z.W. & Zhang, Jun-yi, 2024. "Dynamic planning and decarbonization pathways of the highway power supply network," Applied Energy, Elsevier, vol. 376(PB).
    6. Wang, Han & Zhang, Jiawei & Wang, Peng & Zhang, Ning, 2025. "The role of demand-side flexibilities on low-carbon transition in power system: A case study of West Inner Mongolia, China," Renewable Energy, Elsevier, vol. 242(C).
    7. Li, Zezheng & Zhu, Nenggao & Wen, Xin & Liu, Yu, 2025. "Assessment the impact of power generation hours on the abatement costs of CCUS on coal-fired power plants in China," Energy Economics, Elsevier, vol. 144(C).
    8. Jiang, Haiyang & Lan, Xinyao & Wei, Hongyi & Du, Ershun & Wang, Yating & Strbac, Goran & Zhang, Ning, 2025. "Techno-economic evaluation of seasonal energy storage in the electric-hydrogen-heating energy system," Energy, Elsevier, vol. 319(C).
    9. Wang, Yadong & Wang, Delu & Shi, Xunpeng, 2023. "Sustainable development pathways of China's wind power industry under uncertainties: Perspective from economic benefits and technical potential," Energy Policy, Elsevier, vol. 182(C).
    10. Wu, Hongyu & Zhang, Chengxin & Zhao, Bin & Pei, Gang & Liu, Cheng, 2025. "The underappreciated role of developing photothermal power towards carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 211(C).
    11. Ma, Huan & Sun, Qinghan & Chen, Lei & Chen, Qun & Zhao, Tian & He, Kelun & Xu, Fei & Min, Yong & Wang, Shunjiang & Zhou, Guiping, 2023. "Cogeneration transition for energy system decarbonization: From basic to flexible and complementary multi-energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    12. Bhattacharya, Subhadip & Banerjee, Rangan & Ramadesigan, Venkatasailanathan & Liebman, Ariel & Dargaville, Roger, 2024. "Bending the emission curve ― The role of renewables and nuclear power in achieving a net-zero power system in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    13. Wang, Delu & Mao, Jinqi & Shi, Xunpeng & Li, Chunxiao & Chen, Fan, 2024. "A planning model for coal power exit scales based on minimizing idle and shortage losses: A case study of China," Energy Economics, Elsevier, vol. 138(C).
    14. Wu, Zemin & Wu, Qiuwei & Yu, Xianyu & Wang, Qunwei & Tan, Jin, 2024. "Exploring phase-out path of China's coal power plants with its dynamic impact on electricity balance," Energy Policy, Elsevier, vol. 187(C).
    15. Natalia Gonzalez & Paul Serna-Torre & Pedro A. Sánchez-Pérez & Ryan Davidson & Bryan Murray & Martin Staadecker & Julia Szinai & Rachel Wei & Daniel M. Kammen & Deborah A. Sunter & Patricia Hidalgo-Go, 2024. "Offshore wind and wave energy can reduce total installed capacity required in zero-emissions grids," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    16. Tan, Jiawei & Chen, Xingyu & Bu, Yang & Wang, Feng & Wang, Jialing & Huang, Xianan & Hu, Zhenda & Liu, Lin & Lin, Changzhui & Meng, Chao & Lin, Jian & Xie, Shan & Xu, Jinmei & Jing, Rui & Zhao, Yingru, 2024. "Incorporating FFTA based safety assessment of lithium-ion battery energy storage systems in multi-objective optimization for integrated energy systems," Applied Energy, Elsevier, vol. 367(C).
    17. Xiang, C. & van Gevelt, T., 2025. "China's global leadership aspirations and domestic support for climate policy," Ecological Economics, Elsevier, vol. 227(C).
    18. Merheb, Caroline, 2024. "Why should imminent international funds for solar photovoltaics go to families and the private sector and not to the government to stop the electricity crisis in Lebanon?," Energy Policy, Elsevier, vol. 192(C).
    19. Zhang, Hongji & Ding, Tao & Sun, Yuge & Huang, Yuhan & He, Yuankang & Huang, Can & Li, Fangxing & Xue, Chen & Sun, Xiaoqiang, 2023. "How does load-side re-electrification help carbon neutrality in energy systems: Cost competitiveness analysis and life-cycle deduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    20. Sánchez-Pérez, P.A. & Staadecker, Martin & Szinai, Julia & Kurtz, Sarah & Hidalgo-Gonzalez, Patricia, 2022. "Effect of modeled time horizon on quantifying the need for long-duration storage," Applied Energy, Elsevier, vol. 317(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60264-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.