IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v7y2022i1d10.1038_s41560-021-00942-2.html
   My bibliography  Save this article

Energy insecurity during temperature extremes in remote Australia

Author

Listed:
  • Thomas Longden

    (Australian National University
    Australian National University)

  • Simon Quilty

    (Australian National University)

  • Brad Riley

    (Australian National University
    Australian National University)

  • Lee V. White

    (Australian National University
    Australian National University)

  • Michael Klerck

    (Australian National University
    Tangentyere Council Aboriginal Corporation)

  • Vanessa Napaltjari Davis

    (Tangentyere Council Aboriginal Corporation)

  • Norman Frank Jupurrurla

    (Julalikari Council Aboriginal Corporation)

Abstract

Indigenous communities in remote Australia face dangerous temperature extremes. These extremes are associated with increased risk of mortality and ill health. For many households, temperature extremes increase both their reliance on those services that energy provides, and the risk of those services being disconnected. Poor quality housing, low incomes, poor health and energy insecurity associated with prepayment all exacerbate the risk of temperature-related harm. Here we use daily smart meter data for 3,300 households and regression analysis to assess the relationship between temperature, electricity use and disconnection in 28 remote communities. We find that nearly all households (91%) experienced a disconnection from electricity during the 2018–2019 financial year. Almost three quarters of households (74%) were disconnected more than ten times. Households with high electricity use located in the central climate zones had a one in three chance of a same-day disconnection on very hot or very cold days. A broad suite of interrelated policy responses is required to reduce the frequency, duration and negative effects of disconnection from electricity for remote-living Indigenous residents.

Suggested Citation

  • Thomas Longden & Simon Quilty & Brad Riley & Lee V. White & Michael Klerck & Vanessa Napaltjari Davis & Norman Frank Jupurrurla, 2022. "Energy insecurity during temperature extremes in remote Australia," Nature Energy, Nature, vol. 7(1), pages 43-54, January.
  • Handle: RePEc:nat:natene:v:7:y:2022:i:1:d:10.1038_s41560-021-00942-2
    DOI: 10.1038/s41560-021-00942-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41560-021-00942-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41560-021-00942-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fry, Jane M. & Farrell, Lisa & Temple, Jeromey B., 2023. "Energy poverty and food insecurity: Is there an energy or food trade-off among low-income Australians?," Energy Economics, Elsevier, vol. 123(C).
    2. Mara Hammerle & Paul J. Burke, 2022. "Solar PV and energy poverty in Australia's residential sector," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(4), pages 822-841, October.
    3. Jeremy B. Trombley & Kamaljit K. Sangha & Alan N. Andersen & Suresh N. Thennadil, 2023. "Utilizing Locally Available Bioresources for Powering Remote Indigenous Communities: A Framework and Case Study," Energies, MDPI, vol. 16(2), pages 1-19, January.
    4. Lee V. White & Bradley Riley & Sally Wilson & Francis Markham & Lily O’Neill & Michael Klerck & Vanessa Napaltjari Davis, 2024. "Geographies of regulatory disparity underlying Australia’s energy transition," Nature Energy, Nature, vol. 9(1), pages 92-105, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:7:y:2022:i:1:d:10.1038_s41560-021-00942-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.