IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v387y2025ics0306261925003460.html
   My bibliography  Save this article

PV potential analysis through deep learning and remote sensing-based urban land classification

Author

Listed:
  • Tan, Hongjun
  • Guo, Zhiling
  • Chen, Yuntian
  • Zhang, Haoran
  • Song, Chenchen
  • Jiang, Mingkun
  • Yan, Jinyue

Abstract

Urban land utilization for commerce, residence, grassland, and other administrative subdivisions will affect the available area for renewable infrastructure setup, such as photovoltaic (PV) panels. Incorporating land use types into PV potential assessments is essential for optimizing space allocation, aligning with energy demand centers, and enhancing efficiency. To address the limitations of previous studies that overlook urban land use, this study introduces a framework leveraging remote sensing data and deep learning methods to achieve eight fine-grained and three coarse-grained land use classifications. The framework calculates the PV installation area for each land use type and evaluates their power generation potential based on the yearly average solar irradiance in 2023. Case studies demonstrate that Germany Heilbronn land is suitable for ground PV installations, with a power generation of 5333.85 GWh/year, and rooftop PV installations are the most productive for electricity generation in New Zealand Christchurch, with 3290.08 GWh/year. Unutilized land in Heilbronn and Commercial land in Christchurch is estimated to be the most productive per unit area. Finally, the uncertainty of the PV installation ratio by adopting σi and the confidence interval of potential estimation is discussed. This work experiments with the framework successfully and highlights the effects of the PV installation ratio on the power generation of each land use, providing valuable instructions for urban land utilization and PV installation.

Suggested Citation

  • Tan, Hongjun & Guo, Zhiling & Chen, Yuntian & Zhang, Haoran & Song, Chenchen & Jiang, Mingkun & Yan, Jinyue, 2025. "PV potential analysis through deep learning and remote sensing-based urban land classification," Applied Energy, Elsevier, vol. 387(C).
  • Handle: RePEc:eee:appene:v:387:y:2025:i:c:s0306261925003460
    DOI: 10.1016/j.apenergy.2025.125616
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925003460
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125616?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, Mingkun & Qi, Lingfei & Yu, Ziyi & Wu, Dadi & Si, Pengfei & Li, Peiran & Wei, Wendong & Yu, Xinhai & Yan, Jinyue, 2021. "National level assessment of using existing airport infrastructures for photovoltaic deployment," Applied Energy, Elsevier, vol. 298(C).
    2. Mehdi, Maryam & Ammari, Nabil & Alami Merrouni, Ahmed & El Gallassi, Hicham & Dahmani, Mohamed & Ghennioui, Abdellatif, 2023. "An experimental comparative analysis of different PV technologies performance including the influence of hot-arid climatic parameters: Toward a realistic yield assessment for desert locations," Renewable Energy, Elsevier, vol. 205(C), pages 695-716.
    3. Buffat, René & Grassi, Stefano & Raubal, Martin, 2018. "A scalable method for estimating rooftop solar irradiation potential over large regions," Applied Energy, Elsevier, vol. 216(C), pages 389-401.
    4. Zhang, Chen & Li, Zhixin & Jiang, Haihua & Luo, Yongqiang & Xu, Shen, 2021. "Deep learning method for evaluating photovoltaic potential of urban land-use: A case study of Wuhan, China," Applied Energy, Elsevier, vol. 283(C).
    5. Zhong, Teng & Zhang, Zhixin & Chen, Min & Zhang, Kai & Zhou, Zixuan & Zhu, Rui & Wang, Yijie & Lü, Guonian & Yan, Jinyue, 2021. "A city-scale estimation of rooftop solar photovoltaic potential based on deep learning," Applied Energy, Elsevier, vol. 298(C).
    6. Ali, Ihsan & Shafiullah, GM & Urmee, Tania, 2018. "A preliminary feasibility of roof-mounted solar PV systems in the Maldives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 18-32.
    7. Cheng, Peng & Liu, Wenquan & Ma, Jing & Zhang, Libo & Jia, Limin, 2022. "Solar-powered rail transportation in China: Potential, scenario, and case," Energy, Elsevier, vol. 245(C).
    8. Zhang, Ji & Xu, Le & Shabunko, Veronika & Tay, Stephen En Rong & Sun, Huixuan & Lau, Stephen Siu Yu & Reindl, Thomas, 2019. "Impact of urban block typology on building solar potential and energy use efficiency in tropical high-density city," Applied Energy, Elsevier, vol. 240(C), pages 513-533.
    9. Zhang, Zhengjia & Wang, Qingxiang & Liu, Zhengguang & Chen, Qi & Guo, Zhiling & Zhang, Haoran, 2023. "Renew mineral resource-based cities: Assessment of PV potential in coal mining subsidence areas," Applied Energy, Elsevier, vol. 329(C).
    10. Wang, Kai & Herrando, María & Pantaleo, Antonio M. & Markides, Christos N., 2019. "Technoeconomic assessments of hybrid photovoltaic-thermal vs. conventional solar-energy systems: Case studies in heat and power provision to sports centres," Applied Energy, Elsevier, vol. 254(C).
    11. Sarralde, Juan José & Quinn, David James & Wiesmann, Daniel & Steemers, Koen, 2015. "Solar energy and urban morphology: Scenarios for increasing the renewable energy potential of neighbourhoods in London," Renewable Energy, Elsevier, vol. 73(C), pages 10-17.
    12. Lukač, Niko & Žlaus, Danijel & Seme, Sebastijan & Žalik, Borut & Štumberger, Gorazd, 2013. "Rating of roofs’ surfaces regarding their solar potential and suitability for PV systems, based on LiDAR data," Applied Energy, Elsevier, vol. 102(C), pages 803-812.
    13. Mohajeri, Nahid & Upadhyay, Govinda & Gudmundsson, Agust & Assouline, Dan & Kämpf, Jérôme & Scartezzini, Jean-Louis, 2016. "Effects of urban compactness on solar energy potential," Renewable Energy, Elsevier, vol. 93(C), pages 469-482.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Chen & Li, Zhixin & Jiang, Haihua & Luo, Yongqiang & Xu, Shen, 2021. "Deep learning method for evaluating photovoltaic potential of urban land-use: A case study of Wuhan, China," Applied Energy, Elsevier, vol. 283(C).
    2. Liu, Jiang & Peng, Changhai & Zhang, Junxue, 2025. "Understanding the relationship between rural morphology and photovoltaic (PV) potential in traditional and non-traditional building clusters using shapley additive exPlanations (SHAP) values," Applied Energy, Elsevier, vol. 380(C).
    3. Ding, Feng & Yang, Jianping & Zhou, Zan, 2023. "Economic profits and carbon reduction potential of photovoltaic power generation for China's high-speed railway infrastructure," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    4. Liao, Xuan & Zhu, Rui & Wong, Man Sing & Heo, Joon & Chan, P.W. & Kwok, Coco Yin Tung, 2023. "Fast and accurate estimation of solar irradiation on building rooftops in Hong Kong: A machine learning-based parameterization approach," Renewable Energy, Elsevier, vol. 216(C).
    5. Song, Chenchen & Guo, Zhiling & Liu, Zhengguang & Hongyun, Zhang & Liu, Ran & Zhang, Haoran, 2024. "Application of photovoltaics on different types of land in China: Opportunities, status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    6. Natanian, Jonathan & Aleksandrowicz, Or & Auer, Thomas, 2019. "A parametric approach to optimizing urban form, energy balance and environmental quality: The case of Mediterranean districts," Applied Energy, Elsevier, vol. 254(C).
    7. Chen, Qi & Li, Xinyuan & Zhang, Zhengjia & Zhou, Chao & Guo, Zhiling & Liu, Zhengguang & Zhang, Haoran, 2023. "Remote sensing of photovoltaic scenarios: Techniques, applications and future directions," Applied Energy, Elsevier, vol. 333(C).
    8. Shi, Zhongming & Fonseca, Jimeno A. & Schlueter, Arno, 2021. "A parametric method using vernacular urban block typologies for investigating interactions between solar energy use and urban design," Renewable Energy, Elsevier, vol. 165(P1), pages 823-841.
    9. Zheng, Jianan & Liu, Wenjun & Cui, Ting & Wang, Hanchun & Chen, Fangcai & Gao, Yang & Fan, Liulu & Ali Abaker Omer, Altyeb & Ingenhoff, Jan & Zhang, Xinyu & Liu, Wen, 2023. "A novel domino-like snow removal system for roof PV arrays: Feasibility, performance, and economic benefits," Applied Energy, Elsevier, vol. 333(C).
    10. Drozd, Paweł & Kapica, Jacek & Jurasz, Jakub & Dąbek, Paweł, 2025. "Evaluating cities' solar potential using geographic information systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 209(C).
    11. Hasan, Javeriya & Horvat, Miljana, 2023. "Spatial parameters and methodological approaches in solar potential assessment - State-of-the-art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    12. Lobaccaro, G. & Croce, S. & Lindkvist, C. & Munari Probst, M.C. & Scognamiglio, A. & Dahlberg, J. & Lundgren, M. & Wall, M., 2019. "A cross-country perspective on solar energy in urban planning: Lessons learned from international case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 209-237.
    13. Simone Giostra & Gabriele Masera & Rafaella Monteiro, 2022. "Solar Typologies: A Comparative Analysis of Urban Form and Solar Potential," Sustainability, MDPI, vol. 14(15), pages 1-31, July.
    14. Mohajeri, Nahid & Perera, A.T.D. & Coccolo, Silvia & Mosca, Lucas & Le Guen, Morgane & Scartezzini, Jean-Louis, 2019. "Integrating urban form and distributed energy systems: Assessment of sustainable development scenarios for a Swiss village to 2050," Renewable Energy, Elsevier, vol. 143(C), pages 810-826.
    15. Panagiotis Moraitis & Bala Bhavya Kausika & Nick Nortier & Wilfried Van Sark, 2018. "Urban Environment and Solar PV Performance: The Case of the Netherlands," Energies, MDPI, vol. 11(6), pages 1-14, May.
    16. Huang, Zhaojian & Mendis, Thushini & Xu, Shen, 2019. "Urban solar utilization potential mapping via deep learning technology: A case study of Wuhan, China," Applied Energy, Elsevier, vol. 250(C), pages 283-291.
    17. Özdemir, Samed & Yavuzdoğan, Ahmet & Bilgilioğlu, Burhan Baha & Akbulut, Zeynep, 2023. "SPAN: An open-source plugin for photovoltaic potential estimation of individual roof segments using point cloud data," Renewable Energy, Elsevier, vol. 216(C).
    18. Dan Zhu & Dexuan Song & Jie Shi & Jia Fang & Yili Zhou, 2020. "The Effect of Morphology on Solar Potential of High-Density Residential Area: A Case Study of Shanghai," Energies, MDPI, vol. 13(9), pages 1-17, May.
    19. Primož Mavsar & Klemen Sredenšek & Bojan Štumberger & Miralem Hadžiselimović & Sebastijan Seme, 2019. "Simplified Method for Analyzing the Availability of Rooftop Photovoltaic Potential," Energies, MDPI, vol. 12(22), pages 1-17, November.
    20. Sun, Yanwei & Li, Ying & Wang, Run & Ma, Renfeng, 2022. "Measuring dynamics of solar energy resource quality: Methodology and policy implications for reducing regional energy inequality," Renewable Energy, Elsevier, vol. 197(C), pages 138-150.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:387:y:2025:i:c:s0306261925003460. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.