IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i7p3276-d1117161.html
   My bibliography  Save this article

Sustainable Retrofit of Existing Buildings: Impact Assessment of Residual Fluorocarbons through Uncertainty and Sensitivity Analyses

Author

Listed:
  • Gianluca Maracchini

    (Dipartimento di Ingegneria Civile, Ambientale e Meccanica (DICAM), Università di Trento, 38123 Trento, Italy)

  • Rocco Di Filippo

    (Dipartimento di Ingegneria Civile, Ambientale e Meccanica (DICAM), Università di Trento, 38123 Trento, Italy)

  • Rossano Albatici

    (Dipartimento di Ingegneria Civile, Ambientale e Meccanica (DICAM), Università di Trento, 38123 Trento, Italy)

  • Oreste S. Bursi

    (Dipartimento di Ingegneria Civile, Ambientale e Meccanica (DICAM), Università di Trento, 38123 Trento, Italy)

  • Rosa Di Maggio

    (Dipartimento di Ingegneria Civile, Ambientale e Meccanica (DICAM), Università di Trento, 38123 Trento, Italy)

Abstract

Fluorocarbons are an important category of greenhouse gas emissions, and currently, their use is prohibited due to their significant contribution to the global ozone depletion potential (ODP). During this century, they will continue to emit greenhouse gases into the environment since they are present in the thermal insulation foam and HVAC systems in existing buildings; however, proper disposal of these banks of CFCs/HFCs from existing buildings can limit their effects on the environment. However, there are no studies that have investigated quantifying the achievable environmental savings in this case. In this study, a comparative life cycle assessment (LCA) is conducted to evaluate, for the first time in the literature, the environmental savings achievable through the removal and disposal of CFC/HFC banks from buildings including damage-related emissions. To cope with the scarcity of data, uncertainty and sensitivity analysis techniques are applied. The results show that, for the selected archetype building, the largest annual emissions of CFCs/HFCs come from the external thermal insulation of the envelope. The removal of this material can lead to an additional significant reduction in the GWP (up to 569 kgCO 2 eq/m 2 ) and the ODP (up to 117 × 10 −3 kgCFC-11eq/m 2 ), i.e., higher than that achievable by reducing energy consumption through energy retrofit measures (276 and 0, respectively). Thus, CFC/HFC banks should not be neglected in LCA studies of existing buildings due to their possible significant impact on a building’s ecoprofile.

Suggested Citation

  • Gianluca Maracchini & Rocco Di Filippo & Rossano Albatici & Oreste S. Bursi & Rosa Di Maggio, 2023. "Sustainable Retrofit of Existing Buildings: Impact Assessment of Residual Fluorocarbons through Uncertainty and Sensitivity Analyses," Energies, MDPI, vol. 16(7), pages 1-22, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3276-:d:1117161
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/7/3276/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/7/3276/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Panagiotis Chastas & Theodoros Theodosiou & Karolos J. Kontoleon & Dimitrios Bikas, 2017. "The Effect of Embodied Impact on the Cost-Optimal Levels of Nearly Zero Energy Buildings: A Case Study of a Residential Building in Thessaloniki, Greece," Energies, MDPI, vol. 10(6), pages 1-22, May.
    2. Megan Lickley & Susan Solomon & Sarah Fletcher & Guus J. M. Velders & John Daniel & Matthew Rigby & Stephen A. Montzka & Lambert J. M. Kuijpers & Kane Stone, 2020. "Quantifying contributions of chlorofluorocarbon banks to emissions and impacts on the ozone layer and climate," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    3. Edoardo Baldoni & Silvia Coderoni & Elisa Di Giuseppe & Marco D’Orazio & Roberto Esposti & Gianluca Maracchini, 2021. "A Software Tool for a Stochastic Life Cycle Assessment and Costing of Buildings’ Energy Efficiency Measures," Sustainability, MDPI, vol. 13(14), pages 1-24, July.
    4. Asif, M. & Muneer, T., 2007. "Energy supply, its demand and security issues for developed and emerging economies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(7), pages 1388-1413, September.
    5. Elisa Di Giuseppe & Marco D’Orazio & Guangli Du & Claudio Favi & Sébastien Lasvaux & Gianluca Maracchini & Pierryves Padey, 2020. "A Stochastic Approach to LCA of Internal Insulation Solutions for Historic Buildings," Sustainability, MDPI, vol. 12(4), pages 1-35, February.
    6. Ming Hu, 2020. "A Building Life-Cycle Embodied Performance Index—The Relationship between Embodied Energy, Embodied Carbon and Environmental Impact," Energies, MDPI, vol. 13(8), pages 1-17, April.
    7. Francesco Pomponi & Bernardino D’Amico & Alice M. Moncaster, 2017. "A Method to Facilitate Uncertainty Analysis in LCAs of Buildings," Energies, MDPI, vol. 10(4), pages 1-15, April.
    8. Elena G. Dascalaki & Poulia A. Argiropoulou & Constantinos A. Balaras & Kalliopi G. Droutsa & Simon Kontoyiannidis, 2020. "Benchmarks for Embodied and Operational Energy Assessment of Hellenic Single-Family Houses," Energies, MDPI, vol. 13(17), pages 1-36, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elena G. Dascalaki & Poulia A. Argiropoulou & Constantinos A. Balaras & Kalliopi G. Droutsa & Simon Kontoyiannidis, 2020. "Benchmarks for Embodied and Operational Energy Assessment of Hellenic Single-Family Houses," Energies, MDPI, vol. 13(17), pages 1-36, August.
    2. Marco D’Orazio & Elisa Di Giuseppe & Marta Carosi, 2023. "Life Cycle Assessment of Mortars with Fine Recycled Aggregates from Industrial Waste: Evaluation of Transports Impact in the Italian Context," Sustainability, MDPI, vol. 15(4), pages 1-18, February.
    3. Svetlana Vladislavlevna Lobova & Aleksei Valentinovich Bogoviz & Yulia Vyacheslavovna Ragulina & Alexander Nikolaevich Alekseev, 2019. "The Fuel and Energy Complex of Russia: Analyzing Energy Efficiency Policies at the Federal Level," International Journal of Energy Economics and Policy, Econjournals, vol. 9(1), pages 205-211.
    4. Abolhosseini, Shahrouz & Heshmati, Almas & Altmann, Jörn, 2014. "A Review of Renewable Energy Supply and Energy Efficiency Technologies," IZA Discussion Papers 8145, Institute of Labor Economics (IZA).
    5. Yuan, Mei-Hua & Lo, Shang-Lien, 2020. "Developing indicators for the monitoring of the sustainability of food, energy, and water," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    6. Fekadu, Geleta & Subudhi, Sudhakar, 2018. "Renewable energy for liquid desiccants air conditioning system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 364-379.
    7. Fahad Bin Abdullah & Rizwan Iqbal & Falak Shad Memon & Sadique Ahmad & Mohammed A. El-Affendi, 2023. "Advancing Sustainability in the Power Distribution Industry: An Integrated Framework Analysis," Sustainability, MDPI, vol. 15(10), pages 1-28, May.
    8. Ramos, Greici & Ghisi, Enedir, 2010. "Analysis of daylight calculated using the EnergyPlus programme," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1948-1958, September.
    9. Su, Chi-Wei & Yuan, Xi & Umar, Muhammad & Chang, Tsangyao, 2022. "Dynamic price linkage of energies in transformation: Evidence from quantile connectedness," Resources Policy, Elsevier, vol. 78(C).
    10. Linda Giresini & Claudia Casapulla & Pietro Croce, 2021. "Environmental and Economic Impact of Retrofitting Techniques to Prevent Out-of-Plane Failure Modes of Unreinforced Masonry Buildings," Sustainability, MDPI, vol. 13(20), pages 1-26, October.
    11. Zhang, Xiaochun & Ma, Chun & Song, Xia & Zhou, Yuyu & Chen, Weiping, 2016. "The impacts of wind technology advancement on future global energy," Applied Energy, Elsevier, vol. 184(C), pages 1033-1037.
    12. Suberu, Mohammed Yekini & Mustafa, Mohd Wazir & Bashir, Nouruddeen & Muhamad, Nor Asiah & Mokhtar, Ahmad Safawi, 2013. "Power sector renewable energy integration for expanding access to electricity in sub-Saharan Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 630-642.
    13. Zhenjie Wang & Jiewei Zhang & Hafeez Ullah, 2023. "Exploring the Multidimensional Perspective of Retail Investors’ Attention: The Mediating Influence of Corporate Governance and Information Disclosure on Corporate Environmental Performance in China," Sustainability, MDPI, vol. 15(15), pages 1-33, August.
    14. Xuefeng Li & Han Yang & Jin Jia, 2022. "Impact of energy poverty on cognitive and mental health among middle-aged and older adults in China," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-13, December.
    15. Valentina Marincioni & Virginia Gori & Ernst Jan de Place Hansen & Daniel Herrera-Avellanosa & Sara Mauri & Emanuela Giancola & Aitziber Egusquiza & Alessia Buda & Eleonora Leonardi & Alexander Rieser, 2021. "How Can Scientific Literature Support Decision-Making in the Renovation of Historic Buildings? An Evidence-Based Approach for Improving the Performance of Walls," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    16. Chuang, Ming Chih & Ma, Hwong Wen, 2013. "Energy security and improvements in the function of diversity indices—Taiwan energy supply structure case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 9-20.
    17. Belen Moreno Santamaria & Fernando del Ama Gonzalo & Matthew Griffin & Benito Lauret Aguirregabiria & Juan A. Hernandez Ramos, 2021. "Life Cycle Assessment of Dynamic Water Flow Glazing Envelopes: A Case Study with Real Test Facilities," Energies, MDPI, vol. 14(8), pages 1-17, April.
    18. Luca Ciacci & Fabrizio Passarini, 2020. "Life Cycle Assessment (LCA) of Environmental and Energy Systems," Energies, MDPI, vol. 13(22), pages 1-8, November.
    19. Shen, Yung-Chi & Chou, Chiyang James & Lin, Grace T.R., 2011. "The portfolio of renewable energy sources for achieving the three E policy goals," Energy, Elsevier, vol. 36(5), pages 2589-2598.
    20. Neeraj Sharma & Rajat Agrawal, 2017. "Locating a Wind Energy Project: A Case of a Leading Oil and Gas Producer in India," Vision, , vol. 21(2), pages 172-194, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3276-:d:1117161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.