IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i2p388-d1569417.html
   My bibliography  Save this article

Evaluating the Environmental Impact of Heat Pump Systems: An Integrated Approach to Sustainable Building Operations

Author

Listed:
  • Mahdiyeh Zafaranchi

    (Department of Civil and Environmental Engineering, 201 Mullica Hill Road, Rowan University, Glassboro, NJ 08028, USA)

  • William T. Riddell

    (Department of Civil and Environmental Engineering, 201 Mullica Hill Road, Rowan University, Glassboro, NJ 08028, USA)

  • Nicholas B. Chan

    (Sustainable Engineering Studio, Skidmore, 224 South Michigan Avenue, Owings & Merrill (SOM), Chicago, IL 60604, USA)

  • Elizabeth Saliba

    (Sustainable Engineering Studio, Skidmore, 224 South Michigan Avenue, Owings & Merrill (SOM), Chicago, IL 60604, USA)

  • Luke Leung

    (Sustainable Engineering Studio, Skidmore, 224 South Michigan Avenue, Owings & Merrill (SOM), Chicago, IL 60604, USA)

Abstract

This study evaluates the energy consumption and embodied carbon emissions of various heat pump systems for an office building in Chicago, IL, U.S., over a 50-year lifespan, including the operation, manufacturing, and construction phases. The analyzed systems include air source heat pumps (ASHP) in Air to Air and Air to Water configurations, and ground source heat pumps (GSHP) in Soil to Air and Soil to Water configurations. A traditional HVAC system serves as the baseline for comparison. Advanced simulation tools, including Rhino, Grasshopper, TRACE 700, and One Click LCA, were used to identify the optimal HVAC system for sustainable building operations. Unlike prior studies focusing on GSHP versus traditional HVAC systems, this research directly compares GSHP and ASHP configurations, addressing a significant gap in the sustainable HVAC system design literature. The GSHP (Soil to Water) system demonstrated the lowest energy intensity at 100.8 kWh/m 2 ·yr, a 41.8% improvement over the baseline, and the lowest total embodied carbon emissions at 3,882,164 kg CO 2 e. In contrast, the ASHP (Air to Air) system, while reducing energy consumption relative to the baseline, exhibited the highest embodied carbon emissions among the heat pump configurations due to its higher operational energy demands. The study highlights the significance of the operating phase in embodied carbon contributions. These findings emphasize the importance of a holistic design approach that considers both operational and embodied impacts to achieve sustainable building designs.

Suggested Citation

  • Mahdiyeh Zafaranchi & William T. Riddell & Nicholas B. Chan & Elizabeth Saliba & Luke Leung, 2025. "Evaluating the Environmental Impact of Heat Pump Systems: An Integrated Approach to Sustainable Building Operations," Energies, MDPI, vol. 18(2), pages 1-22, January.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:2:p:388-:d:1569417
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/2/388/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/2/388/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Röck, Martin & Saade, Marcella Ruschi Mendes & Balouktsi, Maria & Rasmussen, Freja Nygaard & Birgisdottir, Harpa & Frischknecht, Rolf & Habert, Guillaume & Lützkendorf, Thomas & Passer, Alexander, 2020. "Embodied GHG emissions of buildings – The hidden challenge for effective climate change mitigation," Applied Energy, Elsevier, vol. 258(C).
    2. Lämmle, Manuel & Bongs, Constanze & Wapler, Jeannette & Günther, Danny & Hess, Stefan & Kropp, Michael & Herkel, Sebastian, 2022. "Performance of air and ground source heat pumps retrofitted to radiator heating systems and measures to reduce space heating temperatures in existing buildings," Energy, Elsevier, vol. 242(C).
    3. Self, Stuart J. & Reddy, Bale V. & Rosen, Marc A., 2013. "Geothermal heat pump systems: Status review and comparison with other heating options," Applied Energy, Elsevier, vol. 101(C), pages 341-348.
    4. Lu, Qi & Narsilio, Guillermo A. & Aditya, Gregorius Riyan & Johnston, Ian W., 2017. "Economic analysis of vertical ground source heat pump systems in Melbourne," Energy, Elsevier, vol. 125(C), pages 107-117.
    5. Carroll, P. & Chesser, M. & Lyons, P., 2020. "Air Source Heat Pumps field studies: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    6. Selman Sevindik & Catalina Spataru & Teresa Domenech Aparisi & Raimund Bleischwitz, 2021. "A Comparative Environmental Assessment of Heat Pumps and Gas Boilers towards a Circular Economy in the UK," Energies, MDPI, vol. 14(11), pages 1-26, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhi, Chengqiang & Zhou, Xiang & Hong, Xiaoyu & Wang, Aoxue & Ye, Wei & Zhang, Xu & Chen, Hongxin, 2025. "Field study of the long-term performance and reliability of large-scale ground source heat pump systems applied to a mixed-use complex of buildings," Renewable Energy, Elsevier, vol. 241(C).
    2. Ma, Zhenjun & Xia, Lei & Gong, Xuemei & Kokogiannakis, Georgios & Wang, Shugang & Zhou, Xinlei, 2020. "Recent advances and development in optimal design and control of ground source heat pump systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    3. Piotr Ciuman & Jan Kaczmarczyk & Małgorzata Jastrzębska, 2022. "Simulation Analysis of Heat Pumps Application for the Purposes of the Silesian Botanical Garden Facilities in Poland," Energies, MDPI, vol. 16(1), pages 1-19, December.
    4. Christakis Christou & Iosifina I. Stylianou & Lazaros Aresti & Georgios A. Florides & Paul Christodoulides, 2024. "Comparison of the Energy Contributions of Different Types of Ground Heat Exchangers Related to Cost in a Working Ground Source Heat Pump System," Energies, MDPI, vol. 17(18), pages 1-16, September.
    5. Yu Zhou & Asal Bidarmaghz & Nikolas Makasis & Guillermo Narsilio, 2021. "Ground-Source Heat Pump Systems: The Effects of Variable Trench Separations and Pipe Configurations in Horizontal Ground Heat Exchangers," Energies, MDPI, vol. 14(13), pages 1-15, June.
    6. Antonio Novelli & Valentina D’Alonzo & Simon Pezzutto & Rubén Aarón Estrada Poggio & Alessandro Casasso & Pietro Zambelli, 2021. "A Spatially-Explicit Economic and Financial Assessment of Closed-Loop Ground-Source Geothermal Heat Pumps: A Case Study for the Residential Buildings of Valle d’Aosta Region," Sustainability, MDPI, vol. 13(22), pages 1-22, November.
    7. Muhammad Abid & Neil Hewitt & Ming-Jun Huang & Christopher Wilson & Donal Cotter, 2021. "Domestic Retrofit Assessment of the Heat Pump System Considering the Impact of Heat Supply Temperature and Operating Mode of Control—A Case Study," Sustainability, MDPI, vol. 13(19), pages 1-26, September.
    8. Weeratunge, Hansani & Aditya, Gregorius Riyan & Dunstall, Simon & de Hoog, Julian & Narsilio, Guillermo & Halgamuge, Saman, 2021. "Feasibility and performance analysis of hybrid ground source heat pump systems in fourteen cities," Energy, Elsevier, vol. 234(C).
    9. di Filippo, Rocco & Maracchini, Gianluca & Albatici, Rossano & Di Maggio, Rosa & Bursi, Oreste S., 2025. "A novel prescriptive approach for buildings’ insulation design considering embodied carbon," Renewable and Sustainable Energy Reviews, Elsevier, vol. 212(C).
    10. Sorranat Ratchawang & Srilert Chotpantarat & Sasimook Chokchai & Isao Takashima & Youhei Uchida & Punya Charusiri, 2022. "A Review of Ground Source Heat Pump Application for Space Cooling in Southeast Asia," Energies, MDPI, vol. 15(14), pages 1-18, July.
    11. Peacock, Malcolm & Fragaki, Aikaterini & Matuszewski, Bogdan J, 2023. "The impact of heat electrification on the seasonal and interannual electricity demand of Great Britain," Applied Energy, Elsevier, vol. 337(C).
    12. Ismail, M.S. & Moghavvemi, M. & Mahlia, T.M.I., 2013. "Energy trends in Palestinian territories of West Bank and Gaza Strip: Possibilities for reducing the reliance on external energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 117-129.
    13. Excell, Lauren E. & Jain, Rishee K., 2024. "Examining the impact of energy efficiency retrofits and vegetation on energy performance of institutional buildings: An equity-driven analysis," Applied Energy, Elsevier, vol. 357(C).
    14. O'Hegarty, R. & Kinnane, O. & Lennon, D. & Colclough, S., 2022. "Air-to-water heat pumps: Review and analysis of the performance gap between in-use and product rated performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    15. Deng, Zhenpeng & Nian, Yongle & Cheng, Wen-long, 2023. "Estimation method of layered ground thermal conductivity for U-tube BHE based on the quasi-3D model," Renewable Energy, Elsevier, vol. 213(C), pages 121-133.
    16. Duan, Zhuocheng & Omrany, Hossein & Zuo, Jian, 2025. "Impact of climate change on energy performance and energy conservation measures effectiveness in Australian office buildings," Energy, Elsevier, vol. 319(C).
    17. Zhang, Boqun & Wang, Yuanfeng & Pan, Lei & Guo, Xiaohui & Liu, Yinshan & Shi, Chengcheng & Xue, Shaoqin & Wang, Liping & Chang, Xinlei & Fan, Lei, 2025. "Net zero carbon park planning framework: Methodology, application, and economic feasibility analysis," Energy, Elsevier, vol. 325(C).
    18. Bojić, Milorad & Cvetković, Dragan & Bojić, Ljubiša, 2015. "Decreasing energy use and influence to environment by radiant panel heating using different energy sources," Applied Energy, Elsevier, vol. 138(C), pages 404-413.
    19. Wang, Wenyi & Zhao, Zhongfan & Zhou, Qun & Qiao, Yiyuan & Cao, Feng, 2021. "Model predictive control for the operation of a transcritical CO2 air source heat pump water heater," Applied Energy, Elsevier, vol. 300(C).
    20. Nian, Yong-Le & Cheng, Wen-Long, 2018. "Insights into geothermal utilization of abandoned oil and gas wells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 44-60.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:2:p:388-:d:1569417. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.