IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v87y2016ip3p1045-1052.html
   My bibliography  Save this article

Operating performance in cooling mode of a ground source heat pump of a nearly-zero energy building in the cold region of China

Author

Listed:
  • Zhang, Shicong
  • Jiang, Yiqiang
  • Xu, Wei
  • Li, Huai
  • Yu, Zhen

Abstract

A hybrid ground source heat pump system is utilized to meet the energy demands of the first nearly-zero energy office building located in the cold region of China. The simulation result shows that the heating, cooling and lighting demands of the building could be reduced to 25 kWh/m2 yr with the utilization of high-performance envelopes and the hybrid renewable energy system. A ground loop consisting of two rectangular fields of 70 borehole heat exchangers is utilized together with the solar energy system to meet the building's energy demand. During the system commissioning phase, from 1 July to 15 August 2014, the inlet and outlet water temperatures of the heat pump unit and boreholes were collected and analysed. The coefficient of performance (COP) of the heat pump unit could reach 5.0 in cooling operation strategy, which satisfies the energy reduction requirement and meets the room temperature standard.

Suggested Citation

  • Zhang, Shicong & Jiang, Yiqiang & Xu, Wei & Li, Huai & Yu, Zhen, 2016. "Operating performance in cooling mode of a ground source heat pump of a nearly-zero energy building in the cold region of China," Renewable Energy, Elsevier, vol. 87(P3), pages 1045-1052.
  • Handle: RePEc:eee:renene:v:87:y:2016:i:p3:p:1045-1052
    DOI: 10.1016/j.renene.2015.09.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115303128
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.09.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Self, Stuart J. & Reddy, Bale V. & Rosen, Marc A., 2013. "Geothermal heat pump systems: Status review and comparison with other heating options," Applied Energy, Elsevier, vol. 101(C), pages 341-348.
    2. Mørck, Ove & Thomsen, Kirsten Engelund & Rose, Jørgen, 2012. "The EU CONCERTO project Class 1 – Demonstrating cost-effective low-energy buildings – Recent results with special focus on comparison of calculated and measured energy performance of Danish buildings," Applied Energy, Elsevier, vol. 97(C), pages 319-326.
    3. Panagiotidou, Maria & Fuller, Robert J., 2013. "Progress in ZEBs—A review of definitions, policies and construction activity," Energy Policy, Elsevier, vol. 62(C), pages 196-206.
    4. Pahud, D. & Belliardi, M. & Caputo, P., 2012. "Geocooling potential of borehole heat exchangers' systems applied to low energy office buildings," Renewable Energy, Elsevier, vol. 45(C), pages 197-204.
    5. Cerón, Isabel & Caamaño-Martín, E. & Neila, F. Javier, 2013. "‘State-of-the-art’ of building integrated photovoltaic products," Renewable Energy, Elsevier, vol. 58(C), pages 127-133.
    6. Geng, Yong & Sarkis, Joseph & Wang, Xinbei & Zhao, Hongyan & Zhong, Yongguang, 2013. "Regional application of ground source heat pump in China: A case of Shenyang," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 95-102.
    7. Lee, J.W. & Jung, H.J. & Park, J.Y. & Lee, J.B. & Yoon, Y., 2013. "Optimization of building window system in Asian regions by analyzing solar heat gain and daylighting elements," Renewable Energy, Elsevier, vol. 50(C), pages 522-531.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Di Jiang & Xueyan Li & Zhiyong Tian, 2024. "Techno-Economic Analysis of a High-Rise Residential Building Adapted to Nearly Zero-Energy Building Standards," Sustainability, MDPI, vol. 16(15), pages 1-15, July.
    2. Mussard, Maxime, 2017. "Solar energy under cold climatic conditions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 733-745.
    3. Harkouss, Fatima & Fardoun, Farouk & Biwole, Pascal Henry, 2019. "Optimal design of renewable energy solution sets for net zero energy buildings," Energy, Elsevier, vol. 179(C), pages 1155-1175.
    4. Roberto Robledo-Fava & Mónica C. Hernández-Luna & Pedro Fernández-de-Córdoba & Humberto Michinel & Sonia Zaragoza & A Castillo-Guzman & Romeo Selvas-Aguilar, 2019. "Analysis of the Influence Subjective Human Parameters in the Calculation of Thermal Comfort and Energy Consumption of Buildings," Energies, MDPI, vol. 12(8), pages 1-23, April.
    5. Yu, Zhenyu & Lu, Fei & Zou, Yu & Yang, Xudong, 2022. "Quantifying the real-time energy flexibility of commuter plug-in electric vehicles in an office building considering photovoltaic and load uncertainty," Applied Energy, Elsevier, vol. 321(C).
    6. Zhong, Shengyuan & Zhao, Jun & Li, Wenjia & Li, Hao & Deng, Shuai & Li, Yang & Hussain, Sajjad & Wang, Xiaoyuan & Zhu, Jiebei, 2021. "Quantitative analysis of information interaction in building energy systems based on mutual information," Energy, Elsevier, vol. 214(C).
    7. Qiao, Zhenyong & Long, Tianhe & Li, Wuyan & Zeng, Liyue & Li, Yongcai & Lu, Jun & Cheng, Yong & Xie, Ling & Yang, Lulu, 2020. "Performance assessment of ground-source heat pumps (GSHPs) in the Southwestern and Northwestern China: In situ measurement," Renewable Energy, Elsevier, vol. 153(C), pages 214-227.
    8. Li, Huai & Xu, Wei & Yu, Zhen & Wu, Jianlin & Sun, Zhifeng, 2017. "Application analyze of a ground source heat pump system in a nearly zero energy building in China," Energy, Elsevier, vol. 125(C), pages 140-151.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Wei & Li, Xianting & You, Tian & Wang, Baolong & Shi, Wenxing, 2015. "Combining ground source absorption heat pump with ground source electrical heat pump for thermal balance, higher efficiency and better economy in cold regions," Renewable Energy, Elsevier, vol. 84(C), pages 74-88.
    2. Jimin Kim & Taehoon Hong & Myeongsoo Chae & Choongwan Koo & Jaemin Jeong, 2015. "An Environmental and Economic Assessment for Selecting the Optimal Ground Heat Exchanger by Considering the Entering Water Temperature," Energies, MDPI, vol. 8(8), pages 1-25, July.
    3. Karytsas, Spyridon & Choropanitis, Ioannis, 2017. "Barriers against and actions towards renewable energy technologies diffusion: A Principal Component Analysis for residential ground source heat pump (GSHP) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 252-271.
    4. Bayer, Peter & de Paly, Michael & Beck, Markus, 2014. "Strategic optimization of borehole heat exchanger field for seasonal geothermal heating and cooling," Applied Energy, Elsevier, vol. 136(C), pages 445-453.
    5. Javadi, Hossein & Mousavi Ajarostaghi, Seyed Soheil & Rosen, Marc A. & Pourfallah, Mohsen, 2019. "Performance of ground heat exchangers: A comprehensive review of recent advances," Energy, Elsevier, vol. 178(C), pages 207-233.
    6. Faidra Kotarela & Anastasios Kyritsis & Nick Papanikolaou, 2020. "On the Implementation of the Nearly Zero Energy Building Concept for Jointly Acting Renewables Self-Consumers in Mediterranean Climate Conditions," Energies, MDPI, vol. 13(5), pages 1-29, February.
    7. Sivasakthivel, T. & Murugesan, K. & Sahoo, P.K., 2015. "Study of technical, economical and environmental viability of ground source heat pump system for Himalayan cities of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 452-462.
    8. Ismail, M.S. & Moghavvemi, M. & Mahlia, T.M.I., 2013. "Energy trends in Palestinian territories of West Bank and Gaza Strip: Possibilities for reducing the reliance on external energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 117-129.
    9. Karlsson, Kenneth B. & Petrović, Stefan N. & Næraa, Rikke, 2016. "Heat supply planning for the ecological housing community Munksøgård," Energy, Elsevier, vol. 115(P3), pages 1733-1747.
    10. Li, Xiang & Yilmaz, Selin & Patel, Martin K. & Chambers, Jonathan, 2023. "Techno-economic analysis of fifth-generation district heating and cooling combined with seasonal borehole thermal energy storage," Energy, Elsevier, vol. 285(C).
    11. Karolis Banionis & Jurga Kumžienė & Arūnas Burlingis & Juozas Ramanauskas & Valdas Paukštys, 2021. "The Changes in Thermal Transmittance of Window Insulating Glass Units Depending on Outdoor Temperatures in Cold Climate Countries," Energies, MDPI, vol. 14(6), pages 1-22, March.
    12. Halil Alibaba, 2016. "Determination of Optimum Window to External Wall Ratio for Offices in a Hot and Humid Climate," Sustainability, MDPI, vol. 8(2), pages 1-21, February.
    13. Niemelä, Tuomo & Kosonen, Risto & Jokisalo, Juha, 2016. "Cost-optimal energy performance renovation measures of educational buildings in cold climate," Applied Energy, Elsevier, vol. 183(C), pages 1005-1020.
    14. Tang, F. & Lahoori, M. & Nowamooz, H. & Rosin-Paumier, S. & Masrouri, F., 2021. "A numerical study into effects of soil compaction and heat storage on thermal performance of a Horizontal Ground Heat Exchanger," Renewable Energy, Elsevier, vol. 172(C), pages 740-752.
    15. Nguyen, Hiep V. & Law, Ying Lam E. & Alavy, Masih & Walsh, Philip R. & Leong, Wey H. & Dworkin, Seth B., 2014. "An analysis of the factors affecting hybrid ground-source heat pump installation potential in North America," Applied Energy, Elsevier, vol. 125(C), pages 28-38.
    16. Suzana Domjan & Sašo Medved & Boštjan Černe & Ciril Arkar, 2019. "Fast Modelling of nZEB Metrics of Office Buildings Built with Advanced Glass and BIPV Facade Structures," Energies, MDPI, vol. 12(16), pages 1-18, August.
    17. Meles, Tensay Hadush & Ryan, Lisa & Mukherjee, Sanghamitra C., 2022. "Heterogeneity in preferences for renewable home heating systems among Irish households," Applied Energy, Elsevier, vol. 307(C).
    18. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    19. Haibo Yu & Hui Zhang & Xiaolin Han & Ningcheng Gao & Zikang Ke & Junle Yan, 2023. "An Empirical Study of a Passive Exterior Window for an Office Building in the Context of Ultra-Low Energy," Sustainability, MDPI, vol. 15(17), pages 1-23, September.
    20. Liu, Xiaobing & Lu, Shilei & Hughes, Patrick & Cai, Zhe, 2015. "A comparative study of the status of GSHP applications in the United States and China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 558-570.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:87:y:2016:i:p3:p:1045-1052. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.