IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v50y2013icp522-531.html
   My bibliography  Save this article

Optimization of building window system in Asian regions by analyzing solar heat gain and daylighting elements

Author

Listed:
  • Lee, J.W.
  • Jung, H.J.
  • Park, J.Y.
  • Lee, J.B.
  • Yoon, Y.

Abstract

This paper presents and optimizes the annual heating, cooling and lighting energy consumption associated with applying different types and properties of window systems in a building envelope. Through using building simulation modeling, various window properties such as U-value, solar heat gain coefficient (SHGC), and visible transmittance (Tvis) are evaluated with different window wall ratios (WWRs) and orientations in five typical Asian climates: Manila, Taipei, Shanghai, Seoul and Sapporo. By means of a regression analysis, simple charts for the relationship between window properties and building energy performance are presented as a function of U-value, SHGC, Tvis, WWR, solar aperture, effective aperture, and orientation. As a design guideline in selecting energy saving windows, an optimized window system for each climate is plotted in detailed charts and tables.

Suggested Citation

  • Lee, J.W. & Jung, H.J. & Park, J.Y. & Lee, J.B. & Yoon, Y., 2013. "Optimization of building window system in Asian regions by analyzing solar heat gain and daylighting elements," Renewable Energy, Elsevier, vol. 50(C), pages 522-531.
  • Handle: RePEc:eee:renene:v:50:y:2013:i:c:p:522-531
    DOI: 10.1016/j.renene.2012.07.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148112004557
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2012.07.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Omar, E. A. & Al-Ragom, F., 2002. "On the effect of glazing and code compliance," Applied Energy, Elsevier, vol. 71(2), pages 75-86, February.
    2. Heiselberg, Per & Brohus, Henrik & Hesselholt, Allan & Rasmussen, Henrik & Seinre, Erkki & Thomas, Sara, 2009. "Application of sensitivity analysis in design of sustainable buildings," Renewable Energy, Elsevier, vol. 34(9), pages 2030-2036.
    3. Manz, Heinrich, 2008. "On minimizing heat transport in architectural glazing," Renewable Energy, Elsevier, vol. 33(1), pages 119-128.
    4. Manz, Heinrich & Menti, Urs-Peter, 2012. "Energy performance of glazings in European climates," Renewable Energy, Elsevier, vol. 37(1), pages 226-232.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Tiantian & Tan, Yufei & Yang, Hongxing & Zhang, Xuedan, 2016. "The application of air layers in building envelopes: A review," Applied Energy, Elsevier, vol. 165(C), pages 707-734.
    2. Lyu, Yuanli & Liu, Wenjie & Chow, Tin-tai & Su, Hua & Qi, Xuejun, 2019. "Pipe-work optimization of water flow window," Renewable Energy, Elsevier, vol. 139(C), pages 136-146.
    3. Solène Goy & François Maréchal & Donal Finn, 2020. "Data for Urban Scale Building Energy Modelling: Assessing Impacts and Overcoming Availability Challenges," Energies, MDPI, vol. 13(16), pages 1-23, August.
    4. Tian, Wei & Song, Jitian & Li, Zhanyong & de Wilde, Pieter, 2014. "Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis," Applied Energy, Elsevier, vol. 135(C), pages 320-328.
    5. Liang Zhao & Wei Zhang & Wenshun Wang, 2022. "BIM-Based Multi-Objective Optimization of Low-Carbon and Energy-Saving Buildings," Sustainability, MDPI, vol. 14(20), pages 1-17, October.
    6. Hassanien, Reda Hassanien Emam & Li, Ming & Yin, Fang, 2018. "The integration of semi-transparent photovoltaics on greenhouse roof for energy and plant production," Renewable Energy, Elsevier, vol. 121(C), pages 377-388.
    7. Pisello, Anna Laura & Goretti, Michele & Cotana, Franco, 2012. "A method for assessing buildings’ energy efficiency by dynamic simulation and experimental activity," Applied Energy, Elsevier, vol. 97(C), pages 419-429.
    8. Jaesung Park & Myunghwan Oh & Chul-sung Lee, 2019. "Thermal Performance Optimization and Experimental Evaluation of Vacuum-Glazed Windows Manufactured via the In-Vacuum Method," Energies, MDPI, vol. 12(19), pages 1-19, September.
    9. Yuan, Jun & Nian, Victor & Su, Bin & Meng, Qun, 2017. "A simultaneous calibration and parameter ranking method for building energy models," Applied Energy, Elsevier, vol. 206(C), pages 657-666.
    10. Sehyun Tak & Soomin Woo & Jiyoung Park & Sungjin Park, 2017. "Effect of the Changeable Organic Semi-Transparent Solar Cell Window on Building Energy Efficiency and User Comfort," Sustainability, MDPI, vol. 9(6), pages 1-14, June.
    11. Probst, Oliver, 2004. "Cooling load of buildings and code compliance," Applied Energy, Elsevier, vol. 77(2), pages 171-186, February.
    12. Jordi Parra & Alfredo Guardo & Eduard Egusquiza & Pere Alavedra, 2015. "Thermal Performance of Ventilated Double Skin Façades with Venetian Blinds," Energies, MDPI, vol. 8(6), pages 1-17, May.
    13. Singh, Ramkishore & Lazarus, I.J. & Kishore, V.V.N., 2015. "Effect of internal woven roller shade and glazing on the energy and daylighting performances of an office building in the cold climate of Shillong," Applied Energy, Elsevier, vol. 159(C), pages 317-333.
    14. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    15. Yildiz, Yusuf & Korkmaz, Koray & Göksal Özbalta, Türkan & Durmus Arsan, Zeynep, 2012. "An approach for developing sensitive design parameter guidelines to reduce the energy requirements of low-rise apartment buildings," Applied Energy, Elsevier, vol. 93(C), pages 337-347.
    16. Su, Ziyi & Li, Xiaofeng, 2022. "Extraction of key parameters and simplification of sub-system energy models using sensitivity analysis in subway stations," Energy, Elsevier, vol. 261(PA).
    17. Popa, Cezar & Pentiuc, Radu, 2012. "Analysis of a new induction thermal converter for heating," Energy, Elsevier, vol. 42(1), pages 81-93.
    18. Tian, Wei, 2013. "A review of sensitivity analysis methods in building energy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 411-419.
    19. Lu, Yuehong & Wang, Shengwei & Yan, Chengchu & Shan, Kui, 2015. "Impacts of renewable energy system design inputs on the performance robustness of net zero energy buildings," Energy, Elsevier, vol. 93(P2), pages 1595-1606.
    20. Arıcı, Müslüm & Kan, Miraç, 2015. "An investigation of flow and conjugate heat transfer in multiple pane windows with respect to gap width, emissivity and gas filling," Renewable Energy, Elsevier, vol. 75(C), pages 249-256.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:50:y:2013:i:c:p:522-531. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.