IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v93y2012icp337-347.html
   My bibliography  Save this article

An approach for developing sensitive design parameter guidelines to reduce the energy requirements of low-rise apartment buildings

Author

Listed:
  • Yildiz, Yusuf
  • Korkmaz, Koray
  • Göksal Özbalta, Türkan
  • Durmus Arsan, Zeynep

Abstract

High levels of energy consumption in residential buildings and global warming are important issues. Thus the energy performance of buildings should be improved in the early stages of design. This article describes an approach for developing guidelines on sensitive and robust design parameters for the present, the 2020s, the 2050s and the 2080s. Such guidelines can help architects to design low-rise apartment buildings that require less energy for various purposes, such as heating or cooling. The article consists of a general literature review, interviews with architects, the generation of case-specific information and a mock-up presentation and a meeting with professionals. An example guideline that aims to reduce annual cooling energy loads under global warming in low-rise apartment buildings located in hot-humid climates is presented to demonstrate how the proposed approach can be applied. For this guideline, case-specific information was generated, and a global sensitivity analysis based on Monte Carlo Analysis and the Latin Hypercube Sampling technique was performed. The results show that the suggested approach is feasible and could be used to provide helpful information to architects during the design of low-rise apartment buildings with high energy performance. The most sensitive design parameters that affect annual cooling energy loads in low-rise apartment buildings were natural ventilation, window area, and the solar heat-gain coefficient (SHGC) of the glazing. The results are relevant for the present, the 2020s, the 2050s and the 2080s.

Suggested Citation

  • Yildiz, Yusuf & Korkmaz, Koray & Göksal Özbalta, Türkan & Durmus Arsan, Zeynep, 2012. "An approach for developing sensitive design parameter guidelines to reduce the energy requirements of low-rise apartment buildings," Applied Energy, Elsevier, vol. 93(C), pages 337-347.
  • Handle: RePEc:eee:appene:v:93:y:2012:i:c:p:337-347
    DOI: 10.1016/j.apenergy.2011.12.048
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261911008440
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mallah, Subhash & Bansal, N.K., 2011. "Parametric sensitivity analysis for techno-economic parameters in Indian power sector," Applied Energy, Elsevier, vol. 88(3), pages 622-629, March.
    2. Kusiak, Andrew & Li, Mingyang & Zhang, Zijun, 2010. "A data-driven approach for steam load prediction in buildings," Applied Energy, Elsevier, vol. 87(3), pages 925-933, March.
    3. Pregernig, Michael, 2000. "Putting science into practice: the diffusion of scientific knowledge exemplified by the Austrian `Research Initiative Against Forest Decline'," Forest Policy and Economics, Elsevier, vol. 1(2), pages 165-176, August.
    4. Yıldız, Yusuf & Arsan, Zeynep Durmuş, 2011. "Identification of the building parameters that influence heating and cooling energy loads for apartment buildings in hot-humid climates," Energy, Elsevier, vol. 36(7), pages 4287-4296.
    5. Heiselberg, Per & Brohus, Henrik & Hesselholt, Allan & Rasmussen, Henrik & Seinre, Erkki & Thomas, Sara, 2009. "Application of sensitivity analysis in design of sustainable buildings," Renewable Energy, Elsevier, vol. 34(9), pages 2030-2036.
    6. Mechri, Houcem Eddine & Capozzoli, Alfonso & Corrado, Vincenzo, 2010. "USE of the ANOVA approach for sensitive building energy design," Applied Energy, Elsevier, vol. 87(10), pages 3073-3083, October.
    7. Kwon, Soon-Duck, 2010. "Uncertainty analysis of wind energy potential assessment," Applied Energy, Elsevier, vol. 87(3), pages 856-865, March.
    8. Gustafsson, Stig-Inge, 1998. "Sensitivity analysis of building energy retrofits," Applied Energy, Elsevier, vol. 61(1), pages 13-23, September.
    9. repec:eee:reensy:v:91:y:2006:i:10:p:1175-1209 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ascione, Fabrizio & Bianco, Nicola & De Stasio, Claudio & Mauro, Gerardo Maria & Vanoli, Giuseppe Peter, 2016. "Multi-stage and multi-objective optimization for energy retrofitting a developed hospital reference building: A new approach to assess cost-optimality," Applied Energy, Elsevier, vol. 174(C), pages 37-68.
    2. Chen, Xi & Yang, Hongxing & Wang, Yuanhao, 2017. "Parametric study of passive design strategies for high-rise residential buildings in hot and humid climates: miscellaneous impact factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 442-460.
    3. Tian, Wei & Song, Jitian & Li, Zhanyong & de Wilde, Pieter, 2014. "Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis," Applied Energy, Elsevier, vol. 135(C), pages 320-328.
    4. Chen, Xi & Yang, Hongxing & Zhang, Weilong, 2015. "A comprehensive sensitivity study of major passive design parameters for the public rental housing development in Hong Kong," Energy, Elsevier, vol. 93(P2), pages 1804-1818.
    5. Tian, Wei, 2013. "A review of sensitivity analysis methods in building energy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 411-419.
    6. repec:eee:appene:v:206:y:2017:i:c:p:657-666 is not listed on IDEAS
    7. Chen, Xi & Yang, Hongxing & Sun, Ke, 2017. "Developing a meta-model for sensitivity analyses and prediction of building performance for passively designed high-rise residential buildings," Applied Energy, Elsevier, vol. 194(C), pages 422-439.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:93:y:2012:i:c:p:337-347. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.