IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v180y2023ics1364032123001569.html
   My bibliography  Save this article

Passive nearly zero energy retrofits of rammed earth rural residential buildings based on energy efficiency and cost-effectiveness analysis

Author

Listed:
  • Jiang, Wei
  • Jin, Yang
  • Liu, Gongliang
  • Li, Qing
  • Li, Dong

Abstract

Rammed earth rural residential buildings (RERRBs) in severe cold climates usually have high energy consumption. The three-step retrofit approach of thermal insulation materials, additional sunspaces and phase change materials (PCMs) was innovatively proposed to retrofit a typical RERRB in severe cold regions of China into a nearly zero energy rural residential building (NZERRB). The three economy parameters of the incremental benefit, payback period and cost performance ratio of each case were analyzed and compared. The external insulation measures of two extruded polystyrene boards (XPS) with different thicknesses were added according to the U-value limitations of the Technical Standard for Nearly Zero Energy Buildings in China. The south sunspaces with three types of windows and four depths were attached, and PCM boards of six design cases in the south wall were investigated. Case P-Ⅰ used XPS envelope insulation (thickness is 290 mm on the outer wall, 270 mm on the roof, and 190 mm on the floor) according to the lower U-value standard. Case P-Ⅰ(T-0.9) added the sunspace of 0.9 m depth and triple-pane glazing windows based on Case P-Ⅰ. Case P-Ⅰ(T-0.9)-PCM-Ⅱ(28 °C) inserted 50 mm PCM board on the inner side of the outer insulation of the south wall based on Case P-Ⅰ(T-0.9). The results indicate that Case P-Ⅰ(T-0.9)-PCM-Ⅱ(28 °C) had the best energy-saving effect and economy, which was the optimal retrofit case to realize NZERRB and saved 92.17% of energy. It showed that insulation retrofit is the most effective energy-saving and cost-effective, followed by additional sunspace and PCM. The research can provide reference methods and ways for passive energy-saving retrofit projects for NZERRBs.

Suggested Citation

  • Jiang, Wei & Jin, Yang & Liu, Gongliang & Li, Qing & Li, Dong, 2023. "Passive nearly zero energy retrofits of rammed earth rural residential buildings based on energy efficiency and cost-effectiveness analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
  • Handle: RePEc:eee:rensus:v:180:y:2023:i:c:s1364032123001569
    DOI: 10.1016/j.rser.2023.113300
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123001569
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113300?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Park, Ji Hun & Berardi, Umberto & Chang, Seong Jin & Wi, Seunghwan & Kang, Yujin & Kim, Sumin, 2021. "Energy retrofit of PCM-applied apartment buildings considering building orientation and height," Energy, Elsevier, vol. 222(C).
    2. Kumar, Dileep & Alam, Morshed & Zou, Patrick X.W. & Sanjayan, Jay G. & Memon, Rizwan Ahmed, 2020. "Comparative analysis of building insulation material properties and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    3. Oliveti, Giuseppe & Arcuri, Natale & De Simone, Marilena & Bruno, Roberto, 2012. "Solar heat gains and operative temperature in attached sunspaces," Renewable Energy, Elsevier, vol. 39(1), pages 241-249.
    4. Fernandes, Jorge & Mateus, Ricardo & Gervásio, Helena & Silva, Sandra M. & Bragança, Luís, 2019. "Passive strategies used in Southern Portugal vernacular rammed earth buildings and their influence in thermal performance," Renewable Energy, Elsevier, vol. 142(C), pages 345-363.
    5. Schiavoni, S. & D׳Alessandro, F. & Bianchi, F. & Asdrubali, F., 2016. "Insulation materials for the building sector: A review and comparative analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 988-1011.
    6. Rempel, Alexandra R. & Rempel, Alan W. & Gates, Kenneth R. & Shaw, Barbara, 2016. "Climate-responsive thermal mass design for Pacific Northwest sunspaces," Renewable Energy, Elsevier, vol. 85(C), pages 981-993.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Yang & Chen, Sarula, 2022. "Thermal insulation solutions for opaque envelope of low-energy buildings: A systematic review of methods and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    2. Qingsong Ma & Hiroatsu Fukuda & Myonghyang Lee & Takumi Kobatake & Yuko Kuma & Akihito Ozaki & Xindong Wei, 2018. "Study on Heat Utilization in an Attached Sunspace in a House with a Central Heating, Ventilation, and Air Conditioning System," Energies, MDPI, vol. 11(5), pages 1-12, May.
    3. Qingsong Ma & Hiroatsu Fukuda & Myonghyang Lee & Takumi Kobatake & Yuko Kuma & Akihito Ozaki & Xindong Wei, 2018. "Experimental Analysis of the Thermal Performance of a Sunspace Attached to a House with a Central Air Conditioning System," Sustainability, MDPI, vol. 10(5), pages 1-17, May.
    4. Rabbat, Christelle & Awad, Sary & Villot, Audrey & Rollet, Delphine & Andrès, Yves, 2022. "Sustainability of biomass-based insulation materials in buildings: Current status in France, end-of-life projections and energy recovery potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    5. Elaouzy, Y. & El Fadar, A., 2022. "Energy, economic and environmental benefits of integrating passive design strategies into buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    6. Shin, Bigyeong & Chang, Seong Jin & Wi, Seunghwan & Kim, Sumin, 2023. "Estimation of energy demand and greenhouse gas emission reduction effect of cross-laminated timber (CLT) hybrid wall using life cycle assessment for urban residential planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    7. Ahmad Taghdisi & Yousof Ghanbari & Mohammad Eskandari, 2020. "Energy-Conservation Considerations Through a Novel Integration of Sunspace and Solar Chimney in The Terraced Rural Dwellings," International Journal of Energy Economics and Policy, Econjournals, vol. 10(3), pages 1-13.
    8. Rossano Albatici & Francesco Passerini & Jens Pfafferott, 2016. "Energy Performance of Verandas in the Building Retrofit Process," Energies, MDPI, vol. 9(5), pages 1-12, May.
    9. Anna Magrini & Giorgia Lentini, 2020. "NZEB Analyses by Means of Dynamic Simulation and Experimental Monitoring in Mediterranean Climate," Energies, MDPI, vol. 13(18), pages 1-25, September.
    10. Sara Brito-Coimbra & Daniel Aelenei & Maria Gloria Gomes & Antonio Moret Rodrigues, 2021. "Building Façade Retrofit with Solar Passive Technologies: A Literature Review," Energies, MDPI, vol. 14(6), pages 1-18, March.
    11. Elisabete R. Teixeira & Gilberto Machado & Adilson de P. Junior & Christiane Guarnier & Jorge Fernandes & Sandra M. Silva & Ricardo Mateus, 2020. "Mechanical and Thermal Performance Characterisation of Compressed Earth Blocks," Energies, MDPI, vol. 13(11), pages 1-22, June.
    12. Stefano Cascone & Gianpiero Evola & Antonio Gagliano & Gaetano Sciuto & Chiara Baroetto Parisi, 2019. "Laboratory and In-Situ Measurements for Thermal and Acoustic Performance of Straw Bales," Sustainability, MDPI, vol. 11(20), pages 1-19, October.
    13. Artur Koper & Karol Prałat & Justyna Ciemnicka & Katarzyna Buczkowska, 2020. "Influence of the Calcination Temperature of Synthetic Gypsum on the Particle Size Distribution and Setting Time of Modified Building Materials," Energies, MDPI, vol. 13(21), pages 1-23, November.
    14. Alejandro Padilla-Rivera & Ben Amor & Pierre Blanchet, 2018. "Evaluating the Link between Low Carbon Reductions Strategies and Its Performance in the Context of Climate Change: A Carbon Footprint of a Wood-Frame Residential Building in Quebec, Canada," Sustainability, MDPI, vol. 10(8), pages 1-20, August.
    15. Alexey Maslakov & Ksenia Sotnikova & Gleb Gribovskii & Dmitry Evlanov, 2022. "Thermal Simulation of Ice Cellars as a Basis for Food Security and Energy Sustainability of Isolated Indigenous Communities in the Arctic," Energies, MDPI, vol. 15(3), pages 1-16, January.
    16. Yang, Jianming & Lin, Zhongqi & Wu, Huijun & Chen, Qingchun & Xu, Xinhua & Huang, Gongsheng & Fan, Liseng & Shen, Xujun & Gan, Keming, 2020. "Inverse optimization of building thermal resistance and capacitance for minimizing air conditioning loads," Renewable Energy, Elsevier, vol. 148(C), pages 975-986.
    17. Teresa Gil-Piqueras & Pablo Rodríguez-Navarro, 2021. "Tradition and Sustainability in Vernacular Architecture of Southeast Morocco," Sustainability, MDPI, vol. 13(2), pages 1-18, January.
    18. Piccardo, C. & Dodoo, A. & Gustavsson, L. & Tettey, U.Y.A., 2020. "Retrofitting with different building materials: Life-cycle primary energy implications," Energy, Elsevier, vol. 192(C).
    19. Valentina Marincioni & Virginia Gori & Ernst Jan de Place Hansen & Daniel Herrera-Avellanosa & Sara Mauri & Emanuela Giancola & Aitziber Egusquiza & Alessia Buda & Eleonora Leonardi & Alexander Rieser, 2021. "How Can Scientific Literature Support Decision-Making in the Renovation of Historic Buildings? An Evidence-Based Approach for Improving the Performance of Walls," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    20. Zhang, Xingxing & Lovati, Marco & Vigna, Ilaria & Widén, Joakim & Han, Mengjie & Gal, Csilla & Feng, Tao, 2018. "A review of urban energy systems at building cluster level incorporating renewable-energy-source (RES) envelope solutions," Applied Energy, Elsevier, vol. 230(C), pages 1034-1056.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:180:y:2023:i:c:s1364032123001569. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.