IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i22p4370-d287734.html
   My bibliography  Save this article

Dynamic Impedance of the Wide-Shallow Bucket Foundation for Offshore Wind Turbine Using Coupled Finite–Infinite Element Method

Author

Listed:
  • Jijian Lian

    (State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300350, China
    School of Civil Engineering, Tianjin University, Tianjin 300350, China)

  • Qi Jiang

    (State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300350, China
    School of Civil Engineering, Tianjin University, Tianjin 300350, China)

  • Xiaofeng Dong

    (State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300350, China
    School of Civil Engineering, Tianjin University, Tianjin 300350, China)

  • Yue Zhao

    (State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300350, China
    Power China Huadong Engineering Corporation Limited, No.201 Gaojiao Road, Yuhang District, Hangzhou 311122, China)

  • Hao Zhao

    (State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300350, China
    School of Civil Engineering, Tianjin University, Tianjin 300350, China)

Abstract

The dynamic impedances of foundation play an important role in the dynamic behavior and structural stability of offshore wind turbines (OWT). Though the behaviors of bucket foundation, which are considered as a relatively innovative foundation type under static loading, have been extensively investigated, the corresponding dynamic performances were neglected in previous research. This study focuses on the dynamic impedances of wide-shallow bucket foundations (WSBF) under the horizontal and rocking loads. Firstly, the numerical model was established to obtain the dynamic impedances of WSBF using the coupled finite-infinite element technique (FE-IFE). The crucial parameters affecting the dynamic responses of WSBF are investigated. It is shown that the skirt length mainly affects the rocking dynamic impedance and the diameter significantly affects the horizontal and coupling impedances, especially when the diameter is larger than 34 m. The overall dynamic responses of WSBF are profoundly affected by the relative soil thickness and the multi-layer soil stiffness. Additionally, dynamic impedances of WSBF are insensitive to the homogeneous soil stiffness. Lastly, the safety threshold curve was calculated according to the OWT, which can provide essential reference for the design of the OWT supported by large scale WSBF.

Suggested Citation

  • Jijian Lian & Qi Jiang & Xiaofeng Dong & Yue Zhao & Hao Zhao, 2019. "Dynamic Impedance of the Wide-Shallow Bucket Foundation for Offshore Wind Turbine Using Coupled Finite–Infinite Element Method," Energies, MDPI, vol. 12(22), pages 1-28, November.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:22:p:4370-:d:287734
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/22/4370/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/22/4370/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jijian Lian & Ou Cai & Xiaofeng Dong & Qi Jiang & Yue Zhao, 2019. "Health Monitoring and Safety Evaluation of the Offshore Wind Turbine Structure: A Review and Discussion of Future Development," Sustainability, MDPI, vol. 11(2), pages 1-29, January.
    2. Jijian Lian & Junni Jiang & Xiaofeng Dong & Haijun Wang & Huan Zhou & Pengwen Wang, 2019. "Coupled Motion Characteristics of Offshore Wind Turbines during the Integrated Transportation Process," Energies, MDPI, vol. 12(10), pages 1-23, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yangchun Han & Jiulong Cheng & Qiang Cui & Qianyun Dong & Wanting Song, 2020. "Uplift Bearing Capacity of Cone-Cylinder Foundation for Transmission Line in Frozen Soil Regions, Using Reduced-Scale Model Tests and Numerical Simulations," Energies, MDPI, vol. 13(8), pages 1-22, April.
    2. Hao Zhao & Hongjie Zheng & Jijian Lian, 2022. "Experimental Study on Static Pressure Sedimentation for a Thick-Walled Bucket Foundation in Sand," Energies, MDPI, vol. 15(16), pages 1-15, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yangwei & Lin, Jiahuan & Zhang, Jun, 2022. "Investigation of a new analytical wake prediction method for offshore floating wind turbines considering an accurate incoming wind flow," Renewable Energy, Elsevier, vol. 185(C), pages 827-849.
    2. Zheng Zhou & Kaizhi Dong & Ziwei Fang & Yang Liu, 2022. "A Two-Stage Approach for Damage Diagnosis of Structures Based on a Fully Distributed Strain Mode under Multigain Feedback Control," Sustainability, MDPI, vol. 14(16), pages 1-25, August.
    3. Wang, L. & Kolios, A. & Liu, X. & Venetsanos, D. & Rui, C., 2022. "Reliability of offshore wind turbine support structures: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    4. Yeter, B. & Garbatov, Y. & Guedes Soares, C., 2022. "Life-extension classification of offshore wind assets using unsupervised machine learning," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    5. Xiaoming Lei & Limin Sun & Ye Xia & Tiantao He, 2020. "Vibration-Based Seismic Damage States Evaluation for Regional Concrete Beam Bridges Using Random Forest Method," Sustainability, MDPI, vol. 12(12), pages 1-18, June.
    6. Sungmok Hwang & Cheol Yoo, 2021. "Health Monitoring and Diagnosis System for a Small H-Type Darrieus Vertical-Axis Wind Turbine," Energies, MDPI, vol. 14(21), pages 1-18, November.
    7. Ren, Zhengru & Verma, Amrit Shankar & Li, Ye & Teuwen, Julie J.E. & Jiang, Zhiyu, 2021. "Offshore wind turbine operations and maintenance: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    8. Gürdal Ertek & Lakshmi Kailas, 2021. "Analyzing a Decade of Wind Turbine Accident News with Topic Modeling," Sustainability, MDPI, vol. 13(22), pages 1-34, November.
    9. Liu, Y. & Hajj, M. & Bao, Y., 2022. "Review of robot-based damage assessment for offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    10. Shen Xie & Xinggang Wang & Mi Zhou & Deyong Wang & Weiping Peng, 2022. "Penetration Behavior of the Footing of Jack-Up Vessel of OWTs in Thin Stiff over NC Clay," Sustainability, MDPI, vol. 14(14), pages 1-17, July.
    11. Jijian Lian & Huan Zhou & Xiaofeng Dong, 2022. "A Theoretical Approach for Resonance Analysis of Wind Turbines under 1P/3P Loads," Energies, MDPI, vol. 15(16), pages 1-15, August.
    12. Songjune Lee & Seungjin Kang & Gwang-Se Lee, 2023. "Predictions for Bending Strain at the Tower Bottom of Offshore Wind Turbine Based on the LSTM Model," Energies, MDPI, vol. 16(13), pages 1-18, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:22:p:4370-:d:287734. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.