IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v201y2017icp148-157.html
   My bibliography  Save this article

Offshore wind energy storage concept for cost-of-rated-power savings

Author

Listed:
  • Qin, Chao
  • Saunders, Gordon
  • Loth, Eric

Abstract

The size and number of off-shore wind turbines over the next decade is expected to rapidly increase due to the high wind energy potential and the ability of such farms to provide utility-scale energy. In this future, inexpensive and efficient on-site wind energy storage can be critical to address short-time (hourly) mismatches between wind supply and energy demand. This study investigates a compressed air energy storage (CAES) and hydraulic power transmission (HPT) system concept. To assess cost impact, the NREL Cost and Scaling Model was modified to improve accuracy and robustness for offshore wind farms with large turbines. Special attention was paid to the support structure, installation, electrical interface and connections, land leasing, and operations and maintenance cost items as well as specific increased/reduced costs reductions associated with CAES+HPT systems. This cost model was validated and applied to a sample $2.92billion project Virginia Offshore case It was found that adaption of CAES+HPT can lead to a substantial savings of 21.6% of this 20-year lifetime cost by dramatically reducing capital and operating cost of the generator and power transmission components. However, there are several additional variables that can impact the off-shore energy policy and planning for this new CAES+HPT concept. Furthermore, these cost-savings are only first-order estimates based on linear mass-cost relationships, and thus detailed engineering and economic analysis are recommended.

Suggested Citation

  • Qin, Chao & Saunders, Gordon & Loth, Eric, 2017. "Offshore wind energy storage concept for cost-of-rated-power savings," Applied Energy, Elsevier, vol. 201(C), pages 148-157.
  • Handle: RePEc:eee:appene:v:201:y:2017:i:c:p:148-157
    DOI: 10.1016/j.apenergy.2017.04.077
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917304683
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.04.077?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fertig, Emily & Apt, Jay, 2011. "Economics of compressed air energy storage to integrate wind power: A case study in ERCOT," Energy Policy, Elsevier, vol. 39(5), pages 2330-2342, May.
    2. Green, Richard & Vasilakos, Nicholas, 2011. "The economics of offshore wind," Energy Policy, Elsevier, vol. 39(2), pages 496-502, February.
    3. Denholm, Paul & Sioshansi, Ramteen, 2009. "The value of compressed air energy storage with wind in transmission-constrained electric power systems," Energy Policy, Elsevier, vol. 37(8), pages 3149-3158, August.
    4. Aneke, Mathew & Wang, Meihong, 2016. "Energy storage technologies and real life applications – A state of the art review," Applied Energy, Elsevier, vol. 179(C), pages 350-377.
    5. Zhao, Haoran & Wu, Qiuwei & Hu, Shuju & Xu, Honghua & Rasmussen, Claus Nygaard, 2015. "Review of energy storage system for wind power integration support," Applied Energy, Elsevier, vol. 137(C), pages 545-553.
    6. Greenblatt, Jeffery B. & Succar, Samir & Denkenberger, David C. & Williams, Robert H. & Socolow, Robert H., 2007. "Baseload wind energy: modeling the competition between gas turbines and compressed air energy storage for supplemental generation," Energy Policy, Elsevier, vol. 35(3), pages 1474-1492, March.
    7. Qin, Chao & Innes-Wimsatt, Elijah & Loth, Eric, 2016. "Hydraulic-electric hybrid wind turbines: Tower mass saving and energy storage capacity," Renewable Energy, Elsevier, vol. 99(C), pages 69-79.
    8. Qin, Chao & Loth, Eric, 2014. "Liquid piston compression efficiency with droplet heat transfer," Applied Energy, Elsevier, vol. 114(C), pages 539-550.
    9. Nyamdash, Batsaikhan & Denny, Eleanor & O'Malley, Mark, 2010. "The viability of balancing wind generation with large scale energy storage," Energy Policy, Elsevier, vol. 38(11), pages 7200-7208, November.
    10. Wiser, Ryan & Bolinger, Mark & Heath, Garvin & Keyser, David & Lantz, Eric & Macknick, Jordan & Mai, Trieu & Millstein, Dev, 2016. "Long-term implications of sustained wind power growth in the United States: Potential benefits and secondary impacts," Applied Energy, Elsevier, vol. 179(C), pages 146-158.
    11. Lantz, Eric & Mai, Trieu & Wiser, Ryan H. & Krishnan, Venkat, 2016. "Long-term implications of sustained wind power growth in the United States: Direct electric system impacts and costs," Applied Energy, Elsevier, vol. 179(C), pages 832-846.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qinwei Wang & Zeli Du & Wenting Chen & Chao Ai & Xiangdong Kong & Jiarui Zhang & Keyi Liu & Gexin Chen, 2024. "Maximum Power Point Tracking Control of Offshore Hydraulic Wind Turbine Based on Radial Basis Function Neural Network," Energies, MDPI, vol. 17(2), pages 1-21, January.
    2. Qin, Chao (Chris) & Loth, Eric, 2021. "Isothermal compressed wind energy storage using abandoned oil/gas wells or coal mines," Applied Energy, Elsevier, vol. 292(C).
    3. Barah Ahn & Vikram C. Patil & Paul I. Ro, 2021. "Effect of Integrating Metal Wire Mesh with Spray Injection for Liquid Piston Gas Compression," Energies, MDPI, vol. 14(13), pages 1-23, June.
    4. Bennett, Jeffrey A. & Simpson, Juliet G. & Qin, Chao & Fittro, Roger & Koenig, Gary M. & Clarens, Andres F. & Loth, Eric, 2021. "Techno-economic analysis of offshore isothermal compressed air energy storage in saline aquifers co-located with wind power," Applied Energy, Elsevier, vol. 303(C).
    5. Ju, Shen-Haw & Huang, Yu-Cheng & Huang, Yin-Yu, 2020. "Study of optimal large-scale offshore wind turbines," Renewable Energy, Elsevier, vol. 154(C), pages 161-174.
    6. Cheng Yang & Jun Jia & Ke He & Liang Xue & Chao Jiang & Shuangyu Liu & Bochao Zhao & Ming Wu & Haoyang Cui, 2023. "Comprehensive Analysis and Evaluation of the Operation and Maintenance of Offshore Wind Power Systems: A Survey," Energies, MDPI, vol. 16(14), pages 1-39, July.
    7. Simpson, J.G. & Hanrahan, G. & Loth, E. & Koenig, G.M. & Sadoway, D.R., 2021. "Liquid metal battery storage in an offshore wind turbine: Concept and economic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Foley, A. & Díaz Lobera, I., 2013. "Impacts of compressed air energy storage plant on an electricity market with a large renewable energy portfolio," Energy, Elsevier, vol. 57(C), pages 85-94.
    2. Madlener, Reinhard & Latz, Jochen, 2013. "Economics of centralized and decentralized compressed air energy storage for enhanced grid integration of wind power," Applied Energy, Elsevier, vol. 101(C), pages 299-309.
    3. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
    4. Rabiee, Abdorreza & Khorramdel, Hossein & Aghaei, Jamshid, 2013. "A review of energy storage systems in microgrids with wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 316-326.
    5. Qin, Chao (Chris) & Loth, Eric, 2021. "Isothermal compressed wind energy storage using abandoned oil/gas wells or coal mines," Applied Energy, Elsevier, vol. 292(C).
    6. Lamy, Julian & Azevedo, Inês L. & Jaramillo, Paulina, 2014. "The role of energy storage in accessing remote wind resources in the Midwest," Energy Policy, Elsevier, vol. 68(C), pages 123-131.
    7. Jorgenson, Jennie & Denholm, Paul & Mai, Trieu, 2018. "Analyzing storage for wind integration in a transmission-constrained power system," Applied Energy, Elsevier, vol. 228(C), pages 122-129.
    8. Safaei, Hossein & Keith, David W. & Hugo, Ronald J., 2013. "Compressed air energy storage (CAES) with compressors distributed at heat loads to enable waste heat utilization," Applied Energy, Elsevier, vol. 103(C), pages 165-179.
    9. Qin, Chao & Innes-Wimsatt, Elijah & Loth, Eric, 2016. "Hydraulic-electric hybrid wind turbines: Tower mass saving and energy storage capacity," Renewable Energy, Elsevier, vol. 99(C), pages 69-79.
    10. Dong Gu Choi & Daiki Min & Jong-hyun Ryu, 2018. "Economic Value Assessment and Optimal Sizing of an Energy Storage System in a Grid-Connected Wind Farm," Energies, MDPI, vol. 11(3), pages 1-23, March.
    11. Safaei, Hossein & Keith, David, 2014. "Compressed air energy storage with waste heat export: An Alberta case study," Scholarly Articles 13489207, Harvard Kennedy School of Government.
    12. Kondziella, Hendrik & Bruckner, Thomas, 2016. "Flexibility requirements of renewable energy based electricity systems – a review of research results and methodologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 10-22.
    13. Johnson, Jeremiah X. & De Kleine, Robert & Keoleian, Gregory A., 2014. "Assessment of energy storage for transmission-constrained wind," Applied Energy, Elsevier, vol. 124(C), pages 377-388.
    14. Chen, Long Xiang & Xie, Mei Na & Zhao, Pan Pan & Wang, Feng Xiang & Hu, Peng & Wang, Dong Xiang, 2018. "A novel isobaric adiabatic compressed air energy storage (IA-CAES) system on the base of volatile fluid," Applied Energy, Elsevier, vol. 210(C), pages 198-210.
    15. Soha, Tamás & Munkácsy, Béla & Harmat, Ádám & Csontos, Csaba & Horváth, Gergely & Tamás, László & Csüllög, Gábor & Daróczi, Henriett & Sáfián, Fanni & Szabó, Mária, 2017. "GIS-based assessment of the opportunities for small-scale pumped hydro energy storage in middle-mountain areas focusing on artificial landscape features," Energy, Elsevier, vol. 141(C), pages 1363-1373.
    16. Su, Yufei & Kern, Jordan D. & Characklis, Gregory W., 2017. "The impact of wind power growth and hydrological uncertainty on financial losses from oversupply events in hydropower-dominated systems," Applied Energy, Elsevier, vol. 194(C), pages 172-183.
    17. Liu, Shuai & Wei, Li & Wang, Huai, 2020. "Review on reliability of supercapacitors in energy storage applications," Applied Energy, Elsevier, vol. 278(C).
    18. Lu, Yilin & Xu, Jingxuan & Chen, Xi & Tian, Yafen & Zhang, Hua, 2023. "Design and thermodynamic analysis of an advanced liquid air energy storage system coupled with LNG cold energy, ORCs and natural resources," Energy, Elsevier, vol. 275(C).
    19. Fallahi, Farhad & Nick, Mostafa & Riahy, Gholam H. & Hosseinian, Seyed Hossein & Doroudi, Aref, 2014. "The value of energy storage in optimal non-firm wind capacity connection to power systems," Renewable Energy, Elsevier, vol. 64(C), pages 34-42.
    20. Yangfang (Helen) Zhou & Alan Scheller‐Wolf & Nicola Secomandi & Stephen Smith, 2019. "Managing Wind‐Based Electricity Generation in the Presence of Storage and Transmission Capacity," Production and Operations Management, Production and Operations Management Society, vol. 28(4), pages 970-989, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:201:y:2017:i:c:p:148-157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.