IDEAS home Printed from
   My bibliography  Save this article

Economics of compressed air energy storage to integrate wind power: A case study in ERCOT


  • Fertig, Emily
  • Apt, Jay


Compressed air energy storage (CAES) could be paired with a wind farm to provide firm, dispatchable baseload power, or serve as a peaking plant and capture upswings in electricity prices. We present a firm-level engineering-economic analysis of a wind/CAES system with a wind farm in central Texas, load in either Dallas or Houston, and a CAES plant whose location is profit-optimized. With 2008 hourly prices and load in Houston, the economically optimal CAES expander capacity is unrealistically large - 24Â GW - and dispatches for only a few hours per week when prices are highest; a price cap and capacity payment likewise results in a large (17Â GW) profit-maximizing CAES expander. Under all other scenarios considered the CAES plant is unprofitable. Using 2008 data, a baseload wind/CAES system is less profitable than a natural gas combined cycle (NGCC) plant at carbon prices less than $56/tCO2 ($15/MMBTU gas) to $230/tCO2 ($5/MMBTU gas). Entering regulation markets raises profit only slightly. Social benefits of CAES paired with wind include avoided construction of new generation capacity, improved air quality during peak times, and increased economic surplus, but may not outweigh the private cost of the CAES system nor justify a subsidy.

Suggested Citation

  • Fertig, Emily & Apt, Jay, 2011. "Economics of compressed air energy storage to integrate wind power: A case study in ERCOT," Energy Policy, Elsevier, vol. 39(5), pages 2330-2342, May.
  • Handle: RePEc:eee:enepol:v:39:y:2011:i:5:p:2330-2342

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Vajjhala, Shalini P. & Fischbeck, Paul S., 2007. "Quantifying siting difficulty: A case study of US transmission line siting," Energy Policy, Elsevier, vol. 35(1), pages 650-671, January.
    2. Pattanariyankool, Sompop & Lave, Lester B., 2010. "Optimizing transmission from distant wind farms," Energy Policy, Elsevier, vol. 38(6), pages 2806-2815, June.
    3. Sioshansi, Ramteen & Denholm, Paul & Jenkin, Thomas & Weiss, Jurgen, 2009. "Estimating the value of electricity storage in PJM: Arbitrage and some welfare effects," Energy Economics, Elsevier, vol. 31(2), pages 269-277, March.
    4. Greenblatt, Jeffery B. & Succar, Samir & Denkenberger, David C. & Williams, Robert H. & Socolow, Robert H., 2007. "Baseload wind energy: modeling the competition between gas turbines and compressed air energy storage for supplemental generation," Energy Policy, Elsevier, vol. 35(3), pages 1474-1492, March.
    5. Denholm, Paul & Sioshansi, Ramteen, 2009. "The value of compressed air energy storage with wind in transmission-constrained electric power systems," Energy Policy, Elsevier, vol. 37(8), pages 3149-3158, August.
    6. Goffe, William L. & Ferrier, Gary D. & Rogers, John, 1994. "Global optimization of statistical functions with simulated annealing," Journal of Econometrics, Elsevier, vol. 60(1-2), pages 65-99.
    7. DeCarolis, Joseph F. & Keith, David W., 2006. "The economics of large-scale wind power in a carbon constrained world," Energy Policy, Elsevier, vol. 34(4), pages 395-410, March.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Capuder, Tomislav & Pandžić, Hrvoje & Kuzle, Igor & Škrlec, Davor, 2013. "Specifics of integration of wind power plants into the Croatian transmission network," Applied Energy, Elsevier, vol. 101(C), pages 142-150.
    2. repec:eee:appene:v:201:y:2017:i:c:p:148-157 is not listed on IDEAS
    3. Foley, A. & Díaz Lobera, I., 2013. "Impacts of compressed air energy storage plant on an electricity market with a large renewable energy portfolio," Energy, Elsevier, vol. 57(C), pages 85-94.
    4. repec:gam:jeners:v:11:y:2018:i:3:p:591-:d:135330 is not listed on IDEAS
    5. Zakeri, Behnam & Syri, Sanna, 2015. "Electrical energy storage systems: A comparative life cycle cost analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 569-596.
    6. Mason, James E. & Archer, Cristina L., 2012. "Baseload electricity from wind via compressed air energy storage (CAES)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1099-1109.
    7. Alami, Abdul Hai & Aokal, Kamilia & Abed, Jehad & Alhemyari, Mohammad, 2017. "Low pressure, modular compressed air energy storage (CAES) system for wind energy storage applications," Renewable Energy, Elsevier, vol. 106(C), pages 201-211.
    8. Aidan Tuohy & Ben Kaun & Robert Entriken, 2014. "Storage and demand-side options for integrating wind power," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(1), pages 93-109, January.
    9. Yang Gu & James McCalley & Ming Ni & Rui Bo, 2013. "Economic Modeling of Compressed Air Energy Storage," Energies, MDPI, Open Access Journal, vol. 6(4), pages 1-21, April.
    10. Safaei, Hossein & Keith, David W. & Hugo, Ronald J., 2013. "Compressed air energy storage (CAES) with compressors distributed at heat loads to enable waste heat utilization," Applied Energy, Elsevier, vol. 103(C), pages 165-179.
    11. Rahimi, Ehsan & Rabiee, Abdorreza & Aghaei, Jamshid & Muttaqi, Kashem M. & Esmaeel Nezhad, Ali, 2013. "On the management of wind power intermittency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 643-653.
    12. Lamy, Julian & Azevedo, Inês L. & Jaramillo, Paulina, 2014. "The role of energy storage in accessing remote wind resources in the Midwest," Energy Policy, Elsevier, vol. 68(C), pages 123-131.
    13. Madlener, Reinhard & Latz, Jochen, 2013. "Economics of centralized and decentralized compressed air energy storage for enhanced grid integration of wind power," Applied Energy, Elsevier, vol. 101(C), pages 299-309.
    14. Abdo, Rodrigo F. & Pedro, Hugo T.C. & Koury, Ricardo N.N. & Machado, Luiz & Coimbra, Carlos F.M. & Porto, Matheus P., 2015. "Performance evaluation of various cryogenic energy storage systems," Energy, Elsevier, vol. 90(P1), pages 1024-1032.
    15. Zhang, Yuan & Yang, Ke & Li, Xuemei & Xu, Jianzhong, 2014. "Thermodynamic analysis of energy conversion and transfer in hybrid system consisting of wind turbine and advanced adiabatic compressed air energy storage," Energy, Elsevier, vol. 77(C), pages 460-477.
    16. Venkataramani, Gayathri & Parankusam, Prasanna & Ramalingam, Velraj & Wang, Jihong, 2016. "A review on compressed air energy storage – A pathway for smart grid and polygeneration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 895-907.
    17. Briola, Stefano & Di Marco, Paolo & Gabbrielli, Roberto & Riccardi, Juri, 2016. "A novel mathematical model for the performance assessment of diabatic compressed air energy storage systems including the turbomachinery characteristic curves," Applied Energy, Elsevier, vol. 178(C), pages 758-772.
    18. Mauch, Brandon & Carvalho, Pedro M.S. & Apt, Jay, 2012. "Can a wind farm with CAES survive in the day-ahead market?," Energy Policy, Elsevier, vol. 48(C), pages 584-593.
    19. Noel, Lance & McCormack, Regina, 2014. "A cost benefit analysis of a V2G-capable electric school bus compared to a traditional diesel school bus," Applied Energy, Elsevier, vol. 126(C), pages 246-255.
    20. Kondziella, Hendrik & Bruckner, Thomas, 2016. "Flexibility requirements of renewable energy based electricity systems – a review of research results and methodologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 10-22.
    21. Johnson, Jeremiah X. & De Kleine, Robert & Keoleian, Gregory A., 2014. "Assessment of energy storage for transmission-constrained wind," Applied Energy, Elsevier, vol. 124(C), pages 377-388.
    22. repec:eee:appene:v:206:y:2017:i:c:p:1552-1563 is not listed on IDEAS
    23. Wadim Strielkowski & Evgeny Lisin, 2017. "Economic Aspects of Innovations in Energy Storage," International Journal of Energy Economics and Policy, Econjournals, vol. 7(1), pages 62-66.
    24. repec:gam:jeners:v:10:y:2017:i:7:p:991-:d:104584 is not listed on IDEAS


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:39:y:2011:i:5:p:2330-2342. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.