IDEAS home Printed from https://ideas.repec.org/p/cam/camdae/1968.html
   My bibliography  Save this paper

A Unit Commitment and Economic Dispatch Model of the GB Electricity Market – Formulation and Application to Hydro Pumped Storage

Author

Listed:
  • Chyong, C-K.
  • Newbery, D.
  • McCarty, T.

Abstract

We present a well calibrated unit commitment and economic dispatch model of the GB electricity market and applied it to the economic analysis of the four existing hydro pumped storage (PS) stations in GB. We found that with more wind on the system PS arbitrage revenue increases: with every percentage point (p.p) increase in wind capacity the total PS arbitrage profit increases by 0.21 p.p.. However, under a range of wind capacity, the PS’ modelled revenue from price arbitrage is not enough to cover their ongoing fixed costs. Analysing the 2015-18 GB balancing and ancillary services data suggests that PS stations were not active in managing transmission constraints and in fact about 60% of constraint payments went to gas-fired units. However, the PS stations are active in provision of ancillary services such as fast reserve, response and other reserve services with a combined market share of at least 30% in 2018. Stacking up the modelled revenue from price arbitrage with the 2018 balancing and ancillary services revenues against the ongoing fixed costs suggests that the four existing PS stations are profitable. Most of the revenue comes from balancing and ancillary services markets – about 75% – whereas only 25% comes from price arbitrage. However, the revenues will not be enough to cover capex and opex of a new 600 MW PS station. The gap in financing will have to come from balancing and ancillary services market opportunities and less so from purely price arbitrage. Finally, we found that the marginal contribution of most of the existing PS stations to gas and coal plant profitability is negative, while from the system point of view, PS stations do contribute to minimizing the total operating cost.

Suggested Citation

  • Chyong, C-K. & Newbery, D. & McCarty, T., 2019. "A Unit Commitment and Economic Dispatch Model of the GB Electricity Market – Formulation and Application to Hydro Pumped Storage," Cambridge Working Papers in Economics 1968, Faculty of Economics, University of Cambridge.
  • Handle: RePEc:cam:camdae:1968
    Note: dmgn
    as

    Download full text from publisher

    File URL: http://www.econ.cam.ac.uk/research-files/repec/cam/pdf/cwpe1968.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Chi Kong Chyong, Bowei Guo, and David Newbery, 2020. "The Impact of a Carbon Tax on the CO2 Emissions Reduction of Wind," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    2. Pfenninger, Stefan & Keirstead, James, 2015. "Renewables, nuclear, or fossil fuels? Scenarios for Great Britain’s power system considering costs, emissions and energy security," Applied Energy, Elsevier, vol. 152(C), pages 83-93.
    3. Wene, C.-O., 1996. "Energy-economy analysis: Linking the macroeconomic and systems engineering approaches," Energy, Elsevier, vol. 21(9), pages 809-824.
    4. Greve, Thomas & Teng, Fei & Pollitt, Michael G. & Strbac, Goran, 2018. "A system operator’s utility function for the frequency response market," Applied Energy, Elsevier, vol. 231(C), pages 562-569.
    5. Walawalkar, Rahul & Apt, Jay & Mancini, Rick, 2007. "Economics of electric energy storage for energy arbitrage and regulation in New York," Energy Policy, Elsevier, vol. 35(4), pages 2558-2568, April.
    6. Cebulla, F. & Fichter, T., 2017. "Merit order or unit-commitment: How does thermal power plant modeling affect storage demand in energy system models?," Renewable Energy, Elsevier, vol. 105(C), pages 117-132.
    7. Newbery, David & Gissey, Giorgio Castagneto & Guo, Bowei & Dodds, Paul E., 2019. "The private and social value of British electrical interconnectors," Energy Policy, Elsevier, vol. 133(C).
    8. Vijay, Avinash & Fouquet, Nicolas & Staffell, Iain & Hawkes, Adam, 2017. "The value of electricity and reserve services in low carbon electricity systems," Applied Energy, Elsevier, vol. 201(C), pages 111-123.
    9. Cludius, Johanna & Hermann, Hauke & Matthes, Felix Chr. & Graichen, Verena, 2014. "The merit order effect of wind and photovoltaic electricity generation in Germany 2008–2016: Estimation and distributional implications," Energy Economics, Elsevier, vol. 44(C), pages 302-313.
    10. Steve Pye & Francis G. N. Li & James Price & Birgit Fais, 2017. "Erratum: Achieving net-zero emissions through the reframing of UK national targets in the post-Paris Agreement era," Nature Energy, Nature, vol. 2(6), pages 1-1, June.
    11. Jean-Charles Hourcade, Mark Jaccard, Chris Bataille, and Frederic Ghersi, 2006. "Hybrid Modeling: New Answers to Old Challenges Introduction to the Special Issue of The Energy Journal," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 1-12.
    12. Hach, Daniel & Chyong, Chi Kong & Spinler, Stefan, 2016. "Capacity market design options: A dynamic capacity investment model and a GB case study," European Journal of Operational Research, Elsevier, vol. 249(2), pages 691-705.
    13. Child, Michael & Kemfert, Claudia & Bogdanov, Dmitrii & Breyer, Christian, 2019. "Flexible electricity generation, grid exchange and storage for the transition to a 100% renewable energy system in Europe," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 139, pages 80-101.
    14. Steve Pye & Francis G. N. Li & James Price & Birgit Fais, 2017. "Achieving net-zero emissions through the reframing of UK national targets in the post-Paris Agreement era," Nature Energy, Nature, vol. 2(3), pages 1-7, March.
    15. Hall, Lisa M.H. & Buckley, Alastair R., 2016. "A review of energy systems models in the UK: Prevalent usage and categorisation," Applied Energy, Elsevier, vol. 169(C), pages 607-628.
    16. Graves, Frank & Jenkin, Thomas & Murphy, Dean, 1999. "Opportunities for Electricity Storage in Deregulating Markets," The Electricity Journal, Elsevier, vol. 12(8), pages 46-56, October.
    17. Sioshansi, Ramteen & Denholm, Paul & Jenkin, Thomas & Weiss, Jurgen, 2009. "Estimating the value of electricity storage in PJM: Arbitrage and some welfare effects," Energy Economics, Elsevier, vol. 31(2), pages 269-277, March.
    18. Hong, Lixuan & Lund, Henrik & Möller, Bernd, 2012. "The importance of flexible power plant operation for Jiangsu's wind integration," Energy, Elsevier, vol. 41(1), pages 499-507.
    19. Strbac, Goran, 2008. "Demand side management: Benefits and challenges," Energy Policy, Elsevier, vol. 36(12), pages 4419-4426, December.
    20. DeCesaro, Jennifer & Porter, Kevin & Milligan, Michael, 2009. "Wind Energy and Power System Operations: A Review of Wind Integration Studies to Date," The Electricity Journal, Elsevier, vol. 22(10), pages 34-43, December.
    21. Karhinen, S. & Huuki, H., 2019. "Private and social benefits of a pumped hydro energy storage with increasing amount of wind power," Energy Economics, Elsevier, vol. 81(C), pages 942-959.
    22. Samer Takriti & Benedikt Krasenbrink & Lilian S.-Y. Wu, 2000. "Incorporating Fuel Constraints and Electricity Spot Prices into the Stochastic Unit Commitment Problem," Operations Research, INFORMS, vol. 48(2), pages 268-280, April.
    23. Zerrahn, Alexander & Schill, Wolf-Peter, 2017. "Long-run power storage requirements for high shares of renewables: review and a new model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1518-1534.
    24. Newbery, David, 2018. "Shifting demand and supply over time and space to manage intermittent generation: The economics of electrical storage," Energy Policy, Elsevier, vol. 113(C), pages 711-720.
    25. Matthias A. Schnellmann & Chi-Kong Chyong & David M. Reiner & Stuart A. Scott, 2018. "Deploying gas power with CCS: The role of operational flexibility, merit order and the future energy system," Working Papers EPRG 1836, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    26. Andersen, Kristoffer S. & Termansen, Lars B. & Gargiulo, Maurizio & Ó Gallachóirc, Brian P., 2019. "Bridging the gap using energy services: Demonstrating a novel framework for soft linking top-down and bottom-up models," Energy, Elsevier, vol. 169(C), pages 277-293.
    27. Locatelli, Giorgio & Palerma, Emanuele & Mancini, Mauro, 2015. "Assessing the economics of large Energy Storage Plants with an optimisation methodology," Energy, Elsevier, vol. 83(C), pages 15-28.
    28. Jia, Zhijie & Lin, Boqiang, 2022. "CEEEA2.0 model: A dynamic CGE model for energy-environment-economy analysis with available data and code," Energy Economics, Elsevier, vol. 112(C).
    29. Newbery, David, 2021. "National Energy and Climate Plans for the island of Ireland: wind curtailment, interconnectors and storage," Energy Policy, Elsevier, vol. 158(C).
    30. Jean Charles Hourcade & Mark Jaccard & Chris Bataille & Frédéric Ghersi, 2006. "Hybrid Modeling: New Answers to Old Challenges," Post-Print halshs-00471234, HAL.
    31. Chyong, C. & Pollitt, M. & Cruise, R., 2019. "Can wholesale electricity prices support “subsidy-free” generation investment in Europe?," Cambridge Working Papers in Economics 1955, Faculty of Economics, University of Cambridge.
    32. Rodriguez, Rolando A. & Becker, Sarah & Greiner, Martin, 2015. "Cost-optimal design of a simplified, highly renewable pan-European electricity system," Energy, Elsevier, vol. 83(C), pages 658-668.
    33. Denholm, Paul & Sioshansi, Ramteen, 2009. "The value of compressed air energy storage with wind in transmission-constrained electric power systems," Energy Policy, Elsevier, vol. 37(8), pages 3149-3158, August.
    34. Heuberger, Clara F. & Rubin, Edward S. & Staffell, Iain & Shah, Nilay & Mac Dowell, Niall, 2017. "Power capacity expansion planning considering endogenous technology cost learning," Applied Energy, Elsevier, vol. 204(C), pages 831-845.
    35. Abujarad, Saleh Y. & Mustafa, M.W. & Jamian, J.J., 2017. "Recent approaches of unit commitment in the presence of intermittent renewable energy resources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 215-223.
    36. Gianfreda, Angelica & Parisio, Lucia & Pelagatti, Matteo, 2018. "A review of balancing costs in Italy before and after RES introduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 549-563.
    37. Thomaßen, Georg & Redl, Christian & Bruckner, Thomas, 2022. "Will the energy-only market collapse? On market dynamics in low-carbon electricity systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    38. Greenwood, D.M. & Lim, K.Y. & Patsios, C. & Lyons, P.F. & Lim, Y.S. & Taylor, P.C., 2017. "Frequency response services designed for energy storage," Applied Energy, Elsevier, vol. 203(C), pages 115-127.
    39. Tuohy, A. & O'Malley, M., 2011. "Pumped storage in systems with very high wind penetration," Energy Policy, Elsevier, vol. 39(4), pages 1965-1974, April.
    40. Katzenstein, Warren & Apt, Jay, 2012. "The cost of wind power variability," Energy Policy, Elsevier, vol. 51(C), pages 233-243.
    41. Zafirakis, Dimitrios & Chalvatzis, Konstantinos J. & Baiocchi, Giovanni & Daskalakis, Georgios, 2016. "The value of arbitrage for energy storage: Evidence from European electricity markets," Applied Energy, Elsevier, vol. 184(C), pages 971-986.
    42. Marianne Zeyringer & James Price & Birgit Fais & Pei-Hao Li & Ed Sharp, 2018. "Designing low-carbon power systems for Great Britain in 2050 that are robust to the spatiotemporal and inter-annual variability of weather," Nature Energy, Nature, vol. 3(5), pages 395-403, May.
    43. Annicchiarico, Barbara & Battles, Susan & Di Dio, Fabio & Molina, Pierfrancesco & Zoppoli, Pietro, 2017. "GHG mitigation schemes and energy policies: A model-based assessment for the Italian economy," Economic Modelling, Elsevier, vol. 61(C), pages 495-509.
    44. Bublitz, Andreas & Keles, Dogan & Fichtner, Wolf, 2017. "An analysis of the decline of electricity spot prices in Europe: Who is to blame?," Energy Policy, Elsevier, vol. 107(C), pages 323-336.
    45. Tapia-Ahumada, Karen & Octaviano, Claudia & Rausch, Sebastian & Pérez-Arriaga, Ignacio, 2015. "Modeling intermittent renewable electricity technologies in general equilibrium models," Economic Modelling, Elsevier, vol. 51(C), pages 242-262.
    46. Chen, Y.-H. Henry & Paltsev, Sergey & Reilly, John M. & Morris, Jennifer F. & Babiker, Mustafa H., 2016. "Long-term economic modeling for climate change assessment," Economic Modelling, Elsevier, vol. 52(PB), pages 867-883.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang, Hou & Zhang, Xiaotong & Yao, Ling & Lu, Ning & Qin, Jun & Liu, Tang & Zhou, Chenghu, 2023. "High-resolution analysis of rooftop photovoltaic potential based on hourly generation simulations and load profiles," Applied Energy, Elsevier, vol. 348(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramteen Sioshansi & Paul Denholm & Thomas Jenkin, 2012. "Market and Policy Barriers to Deployment of Energy Storage," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    2. Antweiler, Werner, 2021. "Microeconomic models of electricity storage: Price Forecasting, arbitrage limits, curtailment insurance, and transmission line utilization," Energy Economics, Elsevier, vol. 101(C).
    3. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    4. Fattahi, A. & Sijm, J. & Faaij, A., 2020. "A systemic approach to analyze integrated energy system modeling tools: A review of national models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    5. Taran Faehn & Gabriel Bachner & Robert Beach & Jean Chateau & Shinichiro Fujimori & Madanmohan Ghosh & Meriem Hamdi-Cherif & Elisa Lanzi & Sergey Paltsev & Toon Vandyck & Bruno Cunha & Rafael Garaffa , 2020. "Capturing Key Energy and Emission Trends in CGE models: Assessment of Status and Remaining Challenges," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 5(1), pages 196-272, June.
    6. Carson, Richard T. & Novan, Kevin, 2013. "The private and social economics of bulk electricity storage," Journal of Environmental Economics and Management, Elsevier, vol. 66(3), pages 404-423.
    7. Price, James & Zeyringer, Marianne & Konadu, Dennis & Sobral Mourão, Zenaida & Moore, Andy & Sharp, Ed, 2018. "Low carbon electricity systems for Great Britain in 2050: An energy-land-water perspective," Applied Energy, Elsevier, vol. 228(C), pages 928-941.
    8. Javier L'opez Prol & Wolf-Peter Schill, 2020. "The Economics of Variable Renewables and Electricity Storage," Papers 2012.15371, arXiv.org.
    9. Berrada, Asmae & Loudiyi, Khalid & Zorkani, Izeddine, 2016. "Valuation of energy storage in energy and regulation markets," Energy, Elsevier, vol. 115(P1), pages 1109-1118.
    10. Chang, Miguel & Thellufsen, Jakob Zink & Zakeri, Behnam & Pickering, Bryn & Pfenninger, Stefan & Lund, Henrik & Østergaard, Poul Alberg, 2021. "Trends in tools and approaches for modelling the energy transition," Applied Energy, Elsevier, vol. 290(C).
    11. Daniel Scamman & Baltazar Solano-Rodríguez & Steve Pye & Lai Fong Chiu & Andrew Z. P. Smith & Tiziano Gallo Cassarino & Mark Barrett & Robert Lowe, 2020. "Heat Decarbonisation Modelling Approaches in the UK: An Energy System Architecture Perspective," Energies, MDPI, vol. 13(8), pages 1-28, April.
    12. Li, Francis G.N. & Bataille, Chris & Pye, Steve & O'Sullivan, Aidan, 2019. "Prospects for energy economy modelling with big data: Hype, eliminating blind spots, or revolutionising the state of the art?," Applied Energy, Elsevier, vol. 239(C), pages 991-1002.
    13. Blanco, Herib & Faaij, André, 2018. "A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1049-1086.
    14. Tom Brijs & Frederik Geth & Sauleh Siddiqui & Benjamin F. Hobbs & Ronnie Belmans, 2016. "Price-Based Unit Commitment Electricity Storage Arbitrage with Piecewise Linear Price-Effects," Discussion Papers of DIW Berlin 1567, DIW Berlin, German Institute for Economic Research.
    15. Gils, Hans Christian & Gardian, Hedda & Kittel, Martin & Schill, Wolf-Peter & Zerrahn, Alexander & Murmann, Alexander & Launer, Jann & Fehler, Alexander & Gaumnitz, Felix & van Ouwerkerk, Jonas & Bußa, 2022. "Modeling flexibility in energy systems — comparison of power sector models based on simplified test cases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    16. Csereklyei, Zsuzsanna & Qu, Songze & Ancev, Tihomir, 2019. "The effect of wind and solar power generation on wholesale electricity prices in Australia," Energy Policy, Elsevier, vol. 131(C), pages 358-369.
    17. McConnell, Dylan & Forcey, Tim & Sandiford, Mike, 2015. "Estimating the value of electricity storage in an energy-only wholesale market," Applied Energy, Elsevier, vol. 159(C), pages 422-432.
    18. Pusceddu, Elian & Zakeri, Behnam & Castagneto Gissey, Giorgio, 2021. "Synergies between energy arbitrage and fast frequency response for battery energy storage systems," Applied Energy, Elsevier, vol. 283(C).
    19. Sioshansi, Ramteen & Denholm, Paul & Jenkin, Thomas, 2011. "A comparative analysis of the value of pure and hybrid electricity storage," Energy Economics, Elsevier, vol. 33(1), pages 56-66, January.
    20. Bell, William Paul & Wild, Phillip & Foster, John & Hewson, Michael, 2017. "Revitalising the wind power induced merit order effect to reduce wholesale and retail electricity prices in Australia," Energy Economics, Elsevier, vol. 67(C), pages 224-241.

    More about this item

    Keywords

    economic modelling; unit commitment; economic dispatch; electricity market modelling; hydro pumped energy storage; wind energy; solar energy; electrical energy storage investment;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
    • L98 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Government Policy
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cam:camdae:1968. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jake Dyer (email available below). General contact details of provider: https://www.econ.cam.ac.uk/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.