IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v141y2017icp1363-1373.html
   My bibliography  Save this article

GIS-based assessment of the opportunities for small-scale pumped hydro energy storage in middle-mountain areas focusing on artificial landscape features

Author

Listed:
  • Soha, Tamás
  • Munkácsy, Béla
  • Harmat, Ádám
  • Csontos, Csaba
  • Horváth, Gergely
  • Tamás, László
  • Csüllög, Gábor
  • Daróczi, Henriett
  • Sáfián, Fanni
  • Szabó, Mária

Abstract

Damaged landscapes caused by mining are common in middle-mountain areas in Europe. At the same time, they can be considered not only challenges but also opportunities in terms of land use and energy management. Middle-mountain water reservoirs could be also used as new elements of a sustainable and flexible energy system. However, until now – as far as the authors know – no research examined the possibility of pumped hydroelectric energy storage for areas with the above-mentioned characteristics. The aim of this paper is to fill this gap with developing an adaptable, geographical information system-based methodology and implement it in a study area where the previously mentioned conditions are highly observable. In the course of the work, three different model versions were mapped. With applying the methodology in a sample area covering 1324 km2, the analysis leads to the conclusion that at least 1590 MWh and at most 1700 MWh worth of electricity could be stored theoretically in the total of 15 upper reservoirs. The average reservoir surface could be 7.85 ha, which is a rather low value considering existing pumped storage practices, which would greatly facilitate integrating the new bodies of water into the landscape and natural ecosystems.

Suggested Citation

  • Soha, Tamás & Munkácsy, Béla & Harmat, Ádám & Csontos, Csaba & Horváth, Gergely & Tamás, László & Csüllög, Gábor & Daróczi, Henriett & Sáfián, Fanni & Szabó, Mária, 2017. "GIS-based assessment of the opportunities for small-scale pumped hydro energy storage in middle-mountain areas focusing on artificial landscape features," Energy, Elsevier, vol. 141(C), pages 1363-1373.
  • Handle: RePEc:eee:energy:v:141:y:2017:i:c:p:1363-1373
    DOI: 10.1016/j.energy.2017.11.051
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421731900X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.11.051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    2. Aneke, Mathew & Wang, Meihong, 2016. "Energy storage technologies and real life applications – A state of the art review," Applied Energy, Elsevier, vol. 179(C), pages 350-377.
    3. Rogeau, A. & Girard, R. & Kariniotakis, G., 2017. "A generic GIS-based method for small Pumped Hydro Energy Storage (PHES) potential evaluation at large scale," Applied Energy, Elsevier, vol. 197(C), pages 241-253.
    4. Morais, Hugo & Kádár, Péter & Faria, Pedro & Vale, Zita A. & Khodr, H.M., 2010. "Optimal scheduling of a renewable micro-grid in an isolated load area using mixed-integer linear programming," Renewable Energy, Elsevier, vol. 35(1), pages 151-156.
    5. Barbour, Edward & Wilson, I.A. Grant & Radcliffe, Jonathan & Ding, Yulong & Li, Yongliang, 2016. "A review of pumped hydro energy storage development in significant international electricity markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 421-432.
    6. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
    7. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    8. Lu, Xu & Wang, Siheng, 2017. "A GIS-based assessment of Tibet's potential for pumped hydropower energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1045-1054.
    9. Nyamdash, Batsaikhan & Denny, Eleanor & O'Malley, Mark, 2010. "The viability of balancing wind generation with large scale energy storage," Energy Policy, Elsevier, vol. 38(11), pages 7200-7208, November.
    10. Geth, F. & Brijs, T. & Kathan, J. & Driesen, J. & Belmans, R., 2015. "An overview of large-scale stationary electricity storage plants in Europe: Current status and new developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1212-1227.
    11. Rappaport, Ron D. & Miles, John, 2017. "Cloud energy storage for grid scale applications in the UK," Energy Policy, Elsevier, vol. 109(C), pages 609-622.
    12. Paish, Oliver, 2002. "Small hydro power: technology and current status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(6), pages 537-556, December.
    13. Guittet, Mélanie & Capezzali, Massimiliano & Gaudard, Ludovic & Romerio, Franco & Vuille, François & Avellan, François, 2016. "Study of the drivers and asset management of pumped-storage power plants historical and geographical perspective," Energy, Elsevier, vol. 111(C), pages 560-579.
    14. Fitzgerald, Niall & Lacal Arántegui, Roberto & McKeogh, Eamon & Leahy, Paul, 2012. "A GIS-based model to calculate the potential for transforming conventional hydropower schemes and non-hydro reservoirs to pumped hydropower schemes," Energy, Elsevier, vol. 41(1), pages 483-490.
    15. Jawahar, C.P. & Michael, Prawin Angel, 2017. "A review on turbines for micro hydro power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 882-887.
    16. Gullberg, Anne Therese, 2013. "The political feasibility of Norway as the ‘green battery’ of Europe," Energy Policy, Elsevier, vol. 57(C), pages 615-623.
    17. Kasaei, Mohammad Javad & Gandomkar, Majid & Nikoukar, Javad, 2017. "Optimal management of renewable energy sources by virtual power plant," Renewable Energy, Elsevier, vol. 114(PB), pages 1180-1188.
    18. Connolly, D. & MacLaughlin, S. & Leahy, M., 2010. "Development of a computer program to locate potential sites for pumped hydroelectric energy storage," Energy, Elsevier, vol. 35(1), pages 375-381.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hilario J. Torres-Herrera & Alexis Lozano-Medina, 2021. "Methodological Proposal for the Assessment Potential of Pumped Hydropower Energy Storage: Case of Gran Canaria Island," Energies, MDPI, vol. 14(12), pages 1-27, June.
    2. Ghorbani, Narges & Makian, Hamed & Breyer, Christian, 2019. "A GIS-based method to identify potential sites for pumped hydro energy storage - Case of Iran," Energy, Elsevier, vol. 169(C), pages 854-867.
    3. Nzotcha, Urbain & Kenfack, Joseph & Blanche Manjia, Marceline, 2019. "Integrated multi-criteria decision making methodology for pumped hydro-energy storage plant site selection from a sustainable development perspective with an application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 930-947.
    4. Ali, Shahid & Stewart, Rodney A. & Sahin, Oz & Vieira, Abel Silva, 2023. "Integrated GIS-AHP-based approach for off-river pumped hydro energy storage site selection," Applied Energy, Elsevier, vol. 337(C).
    5. Campos, José & Csontos, Csaba & Munkácsy, Béla, 2023. "Electricity scenarios for Hungary: Possible role of wind and solar resources in the energy transition," Energy, Elsevier, vol. 278(PB).
    6. Görtz, J. & Aouad, M. & Wieprecht, S. & Terheiden, K., 2022. "Assessment of pumped hydropower energy storage potential along rivers and shorelines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    7. Nzotcha, Urbain & Nsangou, Jean Calvin & Kenfack, Joseph & Ngohe-Ekam, Paul Salomon & Hamandjoda, Oumarou & Bignom, Blaise, 2021. "Combining electric energy storage and deep-lake degassing by means of pumped hydropower," Applied Energy, Elsevier, vol. 304(C).
    8. Pradhan, Anish & Marence, Miroslav & Franca, Mário J., 2021. "The adoption of Seawater Pump Storage Hydropower Systems increases the share of renewable energy production in Small Island Developing States," Renewable Energy, Elsevier, vol. 177(C), pages 448-460.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Bin & Stocks, Matthew & Blakers, Andrew & Anderson, Kirsten, 2018. "Geographic information system algorithms to locate prospective sites for pumped hydro energy storage," Applied Energy, Elsevier, vol. 222(C), pages 300-312.
    2. Nzotcha, Urbain & Nsangou, Jean Calvin & Kenfack, Joseph & Ngohe-Ekam, Paul Salomon & Hamandjoda, Oumarou & Bignom, Blaise, 2021. "Combining electric energy storage and deep-lake degassing by means of pumped hydropower," Applied Energy, Elsevier, vol. 304(C).
    3. Ghorbani, Narges & Makian, Hamed & Breyer, Christian, 2019. "A GIS-based method to identify potential sites for pumped hydro energy storage - Case of Iran," Energy, Elsevier, vol. 169(C), pages 854-867.
    4. Nzotcha, Urbain & Kenfack, Joseph & Blanche Manjia, Marceline, 2019. "Integrated multi-criteria decision making methodology for pumped hydro-energy storage plant site selection from a sustainable development perspective with an application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 930-947.
    5. Haas, Jannik & Prieto-Miranda, Luis & Ghorbani, Narges & Breyer, Christian, 2022. "Revisiting the potential of pumped-hydro energy storage: A method to detect economically attractive sites," Renewable Energy, Elsevier, vol. 181(C), pages 182-193.
    6. Görtz, J. & Aouad, M. & Wieprecht, S. & Terheiden, K., 2022. "Assessment of pumped hydropower energy storage potential along rivers and shorelines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    7. Ali, Shahid & Stewart, Rodney A. & Sahin, Oz & Vieira, Abel Silva, 2023. "Integrated GIS-AHP-based approach for off-river pumped hydro energy storage site selection," Applied Energy, Elsevier, vol. 337(C).
    8. Hilario J. Torres-Herrera & Alexis Lozano-Medina, 2021. "Methodological Proposal for the Assessment Potential of Pumped Hydropower Energy Storage: Case of Gran Canaria Island," Energies, MDPI, vol. 14(12), pages 1-27, June.
    9. Rogeau, A. & Girard, R. & Kariniotakis, G., 2017. "A generic GIS-based method for small Pumped Hydro Energy Storage (PHES) potential evaluation at large scale," Applied Energy, Elsevier, vol. 197(C), pages 241-253.
    10. McPherson, Madeleine & Tahseen, Samiha, 2018. "Deploying storage assets to facilitate variable renewable energy integration: The impacts of grid flexibility, renewable penetration, and market structure," Energy, Elsevier, vol. 145(C), pages 856-870.
    11. Melikoglu, Mehmet, 2017. "Pumped hydroelectric energy storage: Analysing global development and assessing potential applications in Turkey based on Vision 2023 hydroelectricity wind and solar energy targets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 146-153.
    12. Lombardi, P. & Schwabe, F., 2017. "Sharing economy as a new business model for energy storage systems," Applied Energy, Elsevier, vol. 188(C), pages 485-496.
    13. Qin, Chao & Saunders, Gordon & Loth, Eric, 2017. "Offshore wind energy storage concept for cost-of-rated-power savings," Applied Energy, Elsevier, vol. 201(C), pages 148-157.
    14. Bruno Cárdenas & Lawrie Swinfen-Styles & James Rouse & Seamus D. Garvey, 2021. "Short-, Medium-, and Long-Duration Energy Storage in a 100% Renewable Electricity Grid: A UK Case Study," Energies, MDPI, vol. 14(24), pages 1-28, December.
    15. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    16. Bekker, A. & Van Dijk, M. & Niebuhr, C.M., 2022. "A review of low head hydropower at wastewater treatment works and development of an evaluation framework for South Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    17. Masebinu, S.O. & Akinlabi, E.T. & Muzenda, E. & Aboyade, A.O., 2017. "Techno-economics and environmental analysis of energy storage for a student residence under a South African time-of-use tariff rate," Energy, Elsevier, vol. 135(C), pages 413-429.
    18. Abbaspour, M. & Satkin, M. & Mohammadi-Ivatloo, B. & Hoseinzadeh Lotfi, F. & Noorollahi, Y., 2013. "Optimal operation scheduling of wind power integrated with compressed air energy storage (CAES)," Renewable Energy, Elsevier, vol. 51(C), pages 53-59.
    19. Iva Ridjan Skov & Noémi Schneider & Gerald Schweiger & Josef-Peter Schöggl & Alfred Posch, 2021. "Power-to-X in Denmark: An Analysis of Strengths, Weaknesses, Opportunities and Threats," Energies, MDPI, vol. 14(4), pages 1-14, February.
    20. Sonawat, Arihant & Choi, Young-Seok & Kim, Kyung Min & Kim, Jin-Hyuk, 2020. "Parametric study on the sensitivity and influence of axial and radial clearance on the performance of a positive displacement hydraulic turbine," Energy, Elsevier, vol. 201(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:141:y:2017:i:c:p:1363-1373. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.