IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v379y2025ics0306261924022980.html
   My bibliography  Save this article

Maintenance scheduling and vessel routing for offshore wind farms with multiple ports considering day-ahead wind-wave predictions

Author

Listed:
  • Si, Guojin
  • Xia, Tangbin
  • Wang, Dong
  • Gebraeel, Nagi
  • Pan, Ershun
  • Xi, Lifeng

Abstract

Wind power continues to be the fastest-growing source of renewable energy, with offshore wind development playing a crucial role globally. However, one significant challenge is the inadequate capacity of offshore wind ports, which may lead to delays in installation and maintenance plans. Existing operations and maintenance (OAM) frameworks generally overlook constraints imposed by limited port and vessel availability, focusing primarily on the effects of unrestricted resources on maintenance schedules. To address this issue, this article proposes a novel resource-centered maintenance strategy (RCMS) that incorporates the impact of various resource conditions on opportunistic maintenance scheduling and multi-type vessel routing. Unlike traditional health-centered maintenance strategies, the RCMS quantifies the opportunities emerging from dynamic wind speeds. By leveraging day-ahead predictions of wind speeds and wave heights, the port activation and the collaborative dispatching of multi-type vessels from different ports are optimized, ensuring timely maintenance execution while achieving flexible resource allocation. Accordingly, both the positive and negative impacts of resources (weather conditions, service vessels, and OAM ports) are considered. Experimental results show that for offshore wind farm clusters with multiple ports, the RCMS can reduce overall transportation costs by 74.6 %, 0.9 %, and 6.1 % compared to the easy-to-implement and two fixed port strategies.

Suggested Citation

  • Si, Guojin & Xia, Tangbin & Wang, Dong & Gebraeel, Nagi & Pan, Ershun & Xi, Lifeng, 2025. "Maintenance scheduling and vessel routing for offshore wind farms with multiple ports considering day-ahead wind-wave predictions," Applied Energy, Elsevier, vol. 379(C).
  • Handle: RePEc:eee:appene:v:379:y:2025:i:c:s0306261924022980
    DOI: 10.1016/j.apenergy.2024.124915
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924022980
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124915?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Si, Guojin & Xia, Tangbin & Gebraeel, Nagi & Wang, Dong & Pan, Ershun & Xi, Lifeng, 2025. "Holistic opportunistic maintenance scheduling and routing for offshore wind farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    2. Vinhoza, Amanda & Schaeffer, Roberto, 2021. "Brazil's offshore wind energy potential assessment based on a Spatial Multi-Criteria Decision Analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    3. Xiong, Zhanhang & Yao, Jianjiang & Huang, Yongmin & Yu, Zhaoxu & Liu, Yalei, 2024. "A wind speed forecasting method based on EMD-MGM with switching QR loss function and novel subsequence superposition," Applied Energy, Elsevier, vol. 353(PB).
    4. Koukoura, Sofia & Scheu, Matti Niclas & Kolios, Athanasios, 2021. "Influence of extended potential-to-functional failure intervals through condition monitoring systems on offshore wind turbine availability," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    5. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    6. Si, Guojin & Xia, Tangbin & Li, Yaping & Wang, Dong & Chen, Zhen & Pan, Ershun & Xi, Lifeng, 2023. "Resource allocation and maintenance scheduling for distributed multi-center renewable energy systems considering dynamic scope division," Renewable Energy, Elsevier, vol. 217(C).
    7. Bizhani, Hamed & Noroozian, Reza & Muyeen, S.M. & Blaabjerg, Frede, 2022. "Grid integration of multiple wind turbines using a multi-port converter—A novel simultaneous space vector modulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    8. Gutierrez-Alcoba, A. & Hendrix, E.M.T. & Ortega, G. & Halvorsen-Weare, E.E. & Haugland, D., 2019. "On offshore wind farm maintenance scheduling for decision support on vessel fleet composition," European Journal of Operational Research, Elsevier, vol. 279(1), pages 124-131.
    9. Soares-Ramos, Emanuel P.P. & de Oliveira-Assis, Lais & Sarrias-Mena, Raúl & Fernández-Ramírez, Luis M., 2020. "Current status and future trends of offshore wind power in Europe," Energy, Elsevier, vol. 202(C).
    10. Bilgili, Mehmet & Yasar, Abdulkadir & Simsek, Erdogan, 2011. "Offshore wind power development in Europe and its comparison with onshore counterpart," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 905-915, February.
    11. Horn, Jan-Tore & Leira, Bernt J., 2019. "Fatigue reliability assessment of offshore wind turbines with stochastic availability," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    12. Chun Su & Lin Wu, 2024. "Opportunistic maintenance optimisation for offshore wind farm with considering random wind speed," International Journal of Production Research, Taylor & Francis Journals, vol. 62(5), pages 1862-1878, March.
    13. Li, Mingxin & Jiang, Xiaoli & Carroll, James & Negenborn, Rudy R., 2023. "A closed-loop maintenance strategy for offshore wind farms: Incorporating dynamic wind farm states and uncertainty-awareness in decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    14. Petros Papadopoulos & David W. Coit & Ahmed Aziz Ezzat, 2024. "STOCHOS: Stochastic opportunistic maintenance scheduling for offshore wind farms," IISE Transactions, Taylor & Francis Journals, vol. 56(1), pages 1-15, January.
    15. Li, Mingxin & Jiang, Xiaoli & Carroll, James & Negenborn, Rudy R., 2022. "A multi-objective maintenance strategy optimization framework for offshore wind farms considering uncertainty," Applied Energy, Elsevier, vol. 321(C).
    16. Xia, Tangbin & Dong, Yifan & Pan, Ershun & Zheng, Meimei & Wang, Hao & Xi, Lifeng, 2021. "Fleet-level opportunistic maintenance for large-scale wind farms integrating real-time prognostic updating," Renewable Energy, Elsevier, vol. 163(C), pages 1444-1454.
    17. Iris, Çağatay & Lam, Jasmine Siu Lee, 2019. "A review of energy efficiency in ports: Operational strategies, technologies and energy management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 170-182.
    18. deCastro, M. & Salvador, S. & Gómez-Gesteira, M. & Costoya, X. & Carvalho, D. & Sanz-Larruga, F.J. & Gimeno, L., 2019. "Europe, China and the United States: Three different approaches to the development of offshore wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 55-70.
    19. Ren, Zhengru & Verma, Amrit Shankar & Li, Ye & Teuwen, Julie J.E. & Jiang, Zhiyu, 2021. "Offshore wind turbine operations and maintenance: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    20. Caputo, Antonio C. & Federici, Alessandro & Pelagagge, Pacifico M. & Salini, Paolo, 2023. "Offshore wind power system economic evaluation framework under aleatory and epistemic uncertainty," Applied Energy, Elsevier, vol. 350(C).
    21. Stock-Williams, Clym & Swamy, Siddharth Krishna, 2019. "Automated daily maintenance planning for offshore wind farms," Renewable Energy, Elsevier, vol. 133(C), pages 1393-1403.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Si, Guojin & Xia, Tangbin & Gebraeel, Nagi & Wang, Dong & Pan, Ershun & Xi, Lifeng, 2025. "Holistic opportunistic maintenance scheduling and routing for offshore wind farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    2. Li, Mingxin & Jiang, Xiaoli & Carroll, James & Negenborn, Rudy R., 2024. "Operation and maintenance management for offshore wind farms integrating inventory control and health information," Renewable Energy, Elsevier, vol. 231(C).
    3. Lee, Namkyoung & Lee, Hyuntae & Joung, Seulgi, 2025. "A wake-induced two-phase planning framework for offshore wind farm maintenance with stochastic mixed-integer program," Applied Energy, Elsevier, vol. 380(C).
    4. Ren, Zhengru & Verma, Amrit Shankar & Li, Ye & Teuwen, Julie J.E. & Jiang, Zhiyu, 2021. "Offshore wind turbine operations and maintenance: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    5. Kamila Pronińska & Krzysztof Księżopolski, 2021. "Baltic Offshore Wind Energy Development—Poland’s Public Policy Tools Analysis and the Geostrategic Implications," Energies, MDPI, vol. 14(16), pages 1-17, August.
    6. Centeno-Telleria, Manu & Yue, Hong & Carrol, James & Aizpurua, Jose I. & Penalba, Markel, 2024. "O&M-aware techno-economic assessment for floating offshore wind farms: A geospatial evaluation off the North Sea and the Iberian Peninsula," Applied Energy, Elsevier, vol. 371(C).
    7. Pustina, L. & Lugni, C. & Bernardini, G. & Serafini, J. & Gennaretti, M., 2020. "Control of power generated by a floating offshore wind turbine perturbed by sea waves," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    8. Wang, Yifei & Dong, Guangzhong & Yu, Jincheng & Qin, Caiyan & Feng, Yu & Deng, Yanfei & Zhang, Mingming, 2025. "In-situ green hydrogen production from offshore wind farms, a prospective review," Renewable Energy, Elsevier, vol. 239(C).
    9. Saleh, Ali & Chiachío, Manuel & Salas, Juan Fernández & Kolios, Athanasios, 2023. "Self-adaptive optimized maintenance of offshore wind turbines by intelligent Petri nets," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    10. Kang, Jichuan & Zhu, Xu & Shen, Li & Li, Mingxin, 2024. "Fault diagnosis of a wave energy converter gearbox based on an Adam optimized CNN-LSTM algorithm," Renewable Energy, Elsevier, vol. 231(C).
    11. Danovaro, Roberto & Bianchelli, Silvia & Brambilla, Paola & Brussa, Gaia & Corinaldesi, Cinzia & Del Borghi, Adriana & Dell’Anno, Antonio & Fraschetti, Simonetta & Greco, Silvestro & Grosso, Mario & N, 2024. "Making eco-sustainable floating offshore wind farms: Siting, mitigations, and compensations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    12. Lee, Namkyoung & Woo, Joohyun & Kim, Sungryul, 2025. "A deep reinforcement learning ensemble for maintenance scheduling in offshore wind farms," Applied Energy, Elsevier, vol. 377(PA).
    13. Dui, Hongyan & Zhang, Yulu & Bai, Guanghan, 2024. "Analysis of variable system cost and maintenance strategy in life cycle considering different failure modes," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    14. Shuo-Yan Chou & Xuan Loc Pham & Thi Anh Tuyet Nguyen & Tiffany Hui-Kuang Yu, 2023. "Optimal maintenance planning with special emphasis on deterioration process and vessel routing for offshore wind systems," Energy & Environment, , vol. 34(4), pages 739-763, June.
    15. McMorland, J. & Collu, M. & McMillan, D. & Carroll, J. & Coraddu, A., 2023. "Opportunistic maintenance for offshore wind: A review and proposal of future framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    16. Majidi Nezhad, Meysam & Neshat, Mehdi & Piras, Giuseppe & Astiaso Garcia, Davide, 2022. "Sites exploring prioritisation of offshore wind energy potential and mapping for wind farms installation: Iranian islands case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    17. Pliego Marugán, Alberto & García Márquez, Fausto Pedro & Pinar Pérez, Jesús María, 2022. "A techno-economic model for avoiding conflicts of interest between owners of offshore wind farms and maintenance suppliers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    18. Wu, Yunna & Liu, Fangtong & Wu, Junhao & He, Jiaming & Xu, Minjia & Zhou, Jianli, 2022. "Barrier identification and analysis framework to the development of offshore wind-to-hydrogen projects," Energy, Elsevier, vol. 239(PB).
    19. Li, Mingxin & Jiang, Xiaoli & Carroll, James & Negenborn, Rudy R., 2023. "A closed-loop maintenance strategy for offshore wind farms: Incorporating dynamic wind farm states and uncertainty-awareness in decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    20. Acaroğlu, Hakan & García Márquez, Fausto Pedro, 2022. "High voltage direct current systems through submarine cables for offshore wind farms: A life-cycle cost analysis with voltage source converters for bulk power transmission," Energy, Elsevier, vol. 249(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:379:y:2025:i:c:s0306261924022980. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.