Degradation assessment of wind turbine based on additional load measurements
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2024.121271
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Song, Zhe & Zhang, Zijun & Jiang, Yu & Zhu, Jin, 2018. "Wind turbine health state monitoring based on a Bayesian data-driven approach," Renewable Energy, Elsevier, vol. 125(C), pages 172-181.
- Cooperman, Aubryn & Martinez, Marcias, 2015. "Load monitoring for active control of wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 189-201.
- Wu, Yueqi & Ma, Xiandong, 2022. "A hybrid LSTM-KLD approach to condition monitoring of operational wind turbines," Renewable Energy, Elsevier, vol. 181(C), pages 554-566.
- Tian, Zhigang & Zhang, Han, 2022. "Wind farm predictive maintenance considering component level repairs and economic dependency," Renewable Energy, Elsevier, vol. 192(C), pages 495-506.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Camila Correa-Jullian & Sergio Cofre-Martel & Gabriel San Martin & Enrique Lopez Droguett & Gustavo de Novaes Pires Leite & Alexandre Costa, 2022. "Exploring Quantum Machine Learning and Feature Reduction Techniques for Wind Turbine Pitch Fault Detection," Energies, MDPI, vol. 15(8), pages 1-29, April.
- Zhu, Yunyi & Xie, Bin & Wang, Anqi & Qian, Zheng, 2025. "Wind turbine fault detection and identification via self-attention-based dynamic graph representation learning and variable-level normalizing flow," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
- Ma, Yuanchi & Liu, Yongqian & Bai, Xinjian & Guo, Yuanjun & Yang, Zhile & Wang, Liyuan & Tao, Tao & Zhang, Lidong, 2024. "DivideMerge: A multi-vessel optimization approach for cooperative operation and maintenance scheduling in offshore wind farm," Renewable Energy, Elsevier, vol. 229(C).
- Zhou, Jian & Zhang, Wei, 2023. "Coal consumption prediction in thermal power units: A feature construction and selection method," Energy, Elsevier, vol. 273(C).
- Vladimir Franki & Darin Majnarić & Alfredo Višković, 2023. "A Comprehensive Review of Artificial Intelligence (AI) Companies in the Power Sector," Energies, MDPI, vol. 16(3), pages 1-35, January.
- Jijian Lian & Ou Cai & Xiaofeng Dong & Qi Jiang & Yue Zhao, 2019. "Health Monitoring and Safety Evaluation of the Offshore Wind Turbine Structure: A Review and Discussion of Future Development," Sustainability, MDPI, vol. 11(2), pages 1-29, January.
- Xu, Qifa & Fan, Zhenhua & Jia, Weiyin & Jiang, Cuixia, 2020. "Fault detection of wind turbines via multivariate process monitoring based on vine copulas," Renewable Energy, Elsevier, vol. 161(C), pages 939-955.
- Dong, Xinghui & Gao, Di & Li, Jia & Jincao, Zhang & Zheng, Kai, 2020. "Blades icing identification model of wind turbines based on SCADA data," Renewable Energy, Elsevier, vol. 162(C), pages 575-586.
- Jastrzebska, Agnieszka & Morales Hernández, Alejandro & Nápoles, Gonzalo & Salgueiro, Yamisleydi & Vanhoof, Koen, 2022. "Measuring wind turbine health using fuzzy-concept-based drifting models," Renewable Energy, Elsevier, vol. 190(C), pages 730-740.
- Adedipe, Tosin & Shafiee, Mahmood & Zio, Enrico, 2020. "Bayesian Network Modelling for the Wind Energy Industry: An Overview," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
- Chen, Hansi & Liu, Hang & Chu, Xuening & Liu, Qingxiu & Xue, Deyi, 2021. "Anomaly detection and critical SCADA parameters identification for wind turbines based on LSTM-AE neural network," Renewable Energy, Elsevier, vol. 172(C), pages 829-840.
- Song, Jeonghwan & Kim, Taewan & You, Donghyun, 2023. "Particle swarm optimization of a wind farm layout with active control of turbine yaws," Renewable Energy, Elsevier, vol. 206(C), pages 738-747.
- Lucas, Tiago R. & Ferreira, Ana F. & Santos Pereira, R.B. & Alves, Marco, 2022. "Hydrogen production from the WindFloat Atlantic offshore wind farm: A techno-economic analysis," Applied Energy, Elsevier, vol. 310(C).
- Zhang, Mingming & Tan, Bin & Xu, Jianzhong, 2016. "Smart fatigue load control on the large-scale wind turbine blades using different sensing signals," Renewable Energy, Elsevier, vol. 87(P1), pages 111-119.
- Majidi Nezhad, M. & Heydari, A. & Groppi, D. & Cumo, F. & Astiaso Garcia, D., 2020. "Wind source potential assessment using Sentinel 1 satellite and a new forecasting model based on machine learning: A case study Sardinia islands," Renewable Energy, Elsevier, vol. 155(C), pages 212-224.
- Junshuai Yan & Yongqian Liu & Xiaoying Ren & Li Li, 2023. "Wind Turbine Gearbox Condition Monitoring Using Hybrid Attentions and Spatio-Temporal BiConvLSTM Network," Energies, MDPI, vol. 16(19), pages 1-22, September.
- Sidik, Muhammad Abu Bakar & Shahroom, Hamizah Binti & Salam, Zainal & Buntat, Zokafle & Nawawi, Zainuddin & Ahmad, Hussein & Jambak, Muhammad ’Irfan & Arief, Yanuar Zulardiansyah, 2015. "Lightning monitoring system for sustainable energy supply: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 710-725.
- Yan, Jie & Nuertayi, Akejiang & Yan, Yamin & Liu, Shan & Liu, Yongqian, 2023. "Hybrid physical and data driven modeling for dynamic operation characteristic simulation of wind turbine," Renewable Energy, Elsevier, vol. 215(C).
- Kang Bai & Yong Zhou & Zhibo Cui & Weiwei Bao & Nan Zhang & Yongjie Zhai, 2022. "HOG-SVM-Based Image Feature Classification Method for Sound Recognition of Power Equipments," Energies, MDPI, vol. 15(12), pages 1-12, June.
- Fallahi, F. & Bakir, I. & Yildirim, M. & Ye, Z., 2022. "A chance-constrained optimization framework for wind farms to manage fleet-level availability in condition based maintenance and operations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
More about this item
Keywords
Degradation assessment; Supervisory control and data acquisition (SCADA) data; Measurement data; Wind turbine;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:235:y:2024:i:c:s0960148124013399. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.