IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i8p2086-d348571.html
   My bibliography  Save this article

A Study of Wind Turbine Performance Decline with Age through Operation Data Analysis

Author

Listed:
  • Raymond Byrne

    (Centre for Renewables and Energy, Dundalk Institute of Technology, Dublin Road, A91 V5XR Louth, Ireland)

  • Davide Astolfi

    (Department of Engineering, University of Perugia, Via G. Duranti 93, 06125 Perugia, Italy)

  • Francesco Castellani

    (Department of Engineering, University of Perugia, Via G. Duranti 93, 06125 Perugia, Italy)

  • Neil J. Hewitt

    (School of Architecture & the Built Environment, University of Ulster, Belfast BT9 5AG, UK)

Abstract

Ageing of technical systems and machines is a matter of fact. It therefore does not come as a surprise that an energy conversion system such as a wind turbine, which in particular operates under non-stationary conditions, is subjected to performance decline with age. The present study presents an analysis of the performance deterioration with age of a Vestas V52 wind turbine, installed in 2005 at the Dundalk Institute of Technology campus in Ireland. The wind turbine has operated from October 2005 to October 2018 with its original gearbox, that has subsequently been replaced in 2019. Therefore, a key point of the present study is that operation data spanning over thirteen years have been analysed for estimating how the performance degrades in time. To this end, one of the most innovative approaches for wind turbine performance control and monitoring has been employed: a multivariate Support Vector Regression with Gaussian Kernel, whose target is the power output of the wind turbine. Once the model has been trained with a reference data set, the performance degradation is assessed by studying how the residuals between model estimates and measurements evolve. Furthermore, a power curve analysis through the binning method has been performed to estimate the Annual Energy Production variations and suggests that the most convenient strategy for the test case wind turbine (running the gearbox until its end of life) has indeed been adopted. Summarizing, the main results of the present study are as follows: over a ten-year period, the performance of the wind turbine has declined of the order of 5%; the performance deterioration seems to be nonlinear as years pass by; after the gearbox replacement, a fraction of performance deterioration has been recovered, though not all because the rest of the turbine system has been operating for thirteen years from its original state. Finally, it should be noted that the estimate of performance decline is basically consistent with the few results available in the literature.

Suggested Citation

  • Raymond Byrne & Davide Astolfi & Francesco Castellani & Neil J. Hewitt, 2020. "A Study of Wind Turbine Performance Decline with Age through Operation Data Analysis," Energies, MDPI, vol. 13(8), pages 1-18, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:2086-:d:348571
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/8/2086/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/8/2086/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Astolfi, Davide & Castellani, Francesco & Garinei, Alberto & Terzi, Ludovico, 2015. "Data mining techniques for performance analysis of onshore wind farms," Applied Energy, Elsevier, vol. 148(C), pages 220-233.
    2. Artigao, Estefania & Martín-Martínez, Sergio & Honrubia-Escribano, Andrés & Gómez-Lázaro, Emilio, 2018. "Wind turbine reliability: A comprehensive review towards effective condition monitoring development," Applied Energy, Elsevier, vol. 228(C), pages 1569-1583.
    3. Lapira, Edzel & Brisset, Dustin & Davari Ardakani, Hossein & Siegel, David & Lee, Jay, 2012. "Wind turbine performance assessment using multi-regime modeling approach," Renewable Energy, Elsevier, vol. 45(C), pages 86-95.
    4. Davide Astolfi & Francesco Castellani, 2019. "Wind Turbine Power Curve Upgrades: Part II," Energies, MDPI, vol. 12(8), pages 1-20, April.
    5. Sequeira, C. & Pacheco, A. & Galego, P. & Gorbeña, E., 2019. "Analysis of the efficiency of wind turbine gearboxes using the temperature variable," Renewable Energy, Elsevier, vol. 135(C), pages 465-472.
    6. Song, Zhe & Zhang, Zijun & Jiang, Yu & Zhu, Jin, 2018. "Wind turbine health state monitoring based on a Bayesian data-driven approach," Renewable Energy, Elsevier, vol. 125(C), pages 172-181.
    7. Kumar, Yogesh & Ringenberg, Jordan & Depuru, Soma Shekara & Devabhaktuni, Vijay K. & Lee, Jin Woo & Nikolaidis, Efstratios & Andersen, Brett & Afjeh, Abdollah, 2016. "Wind energy: Trends and enabling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 209-224.
    8. Marvuglia, Antonino & Messineo, Antonio, 2012. "Monitoring of wind farms’ power curves using machine learning techniques," Applied Energy, Elsevier, vol. 98(C), pages 574-583.
    9. Yang, Wenxian & Court, Richard & Jiang, Jiesheng, 2013. "Wind turbine condition monitoring by the approach of SCADA data analysis," Renewable Energy, Elsevier, vol. 53(C), pages 365-376.
    10. Davide Astolfi & Francesco Castellani & Ludovico Terzi, 2018. "Wind Turbine Power Curve Upgrades," Energies, MDPI, vol. 11(5), pages 1-17, May.
    11. Hwangbo, Hoon & Ding, Yu & Eisele, Oliver & Weinzierl, Guido & Lang, Ulrich & Pechlivanoglou, Georgios, 2017. "Quantifying the effect of vortex generator installation on wind power production: An academia-industry case study," Renewable Energy, Elsevier, vol. 113(C), pages 1589-1597.
    12. Staffell, Iain & Green, Richard, 2014. "How does wind farm performance decline with age?," Renewable Energy, Elsevier, vol. 66(C), pages 775-786.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Davide Astolfi & Francesco Castellani & Andrea Lombardi & Ludovico Terzi, 2021. "Multivariate SCADA Data Analysis Methods for Real-World Wind Turbine Power Curve Monitoring," Energies, MDPI, vol. 14(4), pages 1-18, February.
    2. Davide Astolfi & Raymond Byrne & Francesco Castellani, 2021. "Estimation of the Performance Aging of the Vestas V52 Wind Turbine through Comparative Test Case Analysis," Energies, MDPI, vol. 14(4), pages 1-25, February.
    3. Michiel Dhont & Elena Tsiporkova & Veselka Boeva, 2021. "Advanced Discretisation and Visualisation Methods for Performance Profiling of Wind Turbines," Energies, MDPI, vol. 14(19), pages 1-30, September.
    4. Davide Astolfi & Ravi Pandit & Ludovico Terzi & Andrea Lombardi, 2022. "Discussion of Wind Turbine Performance Based on SCADA Data and Multiple Test Case Analysis," Energies, MDPI, vol. 15(15), pages 1-17, July.
    5. He, Rui & Tian, Zhigang & Wang, Yifei & Zuo, Mingjian & Guo, Ziwei, 2023. "Condition-based maintenance optimization for multi-component systems considering prognostic information and degraded working efficiency," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    6. Davide Astolfi & Raymond Byrne & Francesco Castellani, 2020. "Analysis of Wind Turbine Aging through Operation Curves," Energies, MDPI, vol. 13(21), pages 1-21, October.
    7. Erik Möllerström & Sean Gregory & Aromal Sugathan, 2021. "Improvement of AEP Predictions with Time for Swedish Wind Farms," Energies, MDPI, vol. 14(12), pages 1-12, June.
    8. Maria Christina Gudrun Hart & Michael Hans Breitner, 2022. "Fostering Energy Resilience in the Rural Thai Power System—A Case Study in Nakhon Phanom," Energies, MDPI, vol. 15(19), pages 1-20, October.
    9. Davide Astolfi & Ravi Pandit, 2022. "Wind Turbine Performance Decline with Age," Energies, MDPI, vol. 15(14), pages 1-4, July.
    10. Gisela Pujol-Vazquez & Leonardo Acho & José Gibergans-Báguena, 2020. "Fault Detection Algorithm for Wind Turbines’ Pitch Actuator Systems," Energies, MDPI, vol. 13(11), pages 1-14, June.
    11. Paxis Marques João Roque & Shyama Pada Chowdhury & Zhongjie Huan, 2021. "Performance Enhancement of Proposed Namaacha Wind Farm by Minimising Losses Due to the Wake Effect: A Mozambican Case Study," Energies, MDPI, vol. 14(14), pages 1-22, July.
    12. Suo Li & Ling-ling Huang & Yang Liu & Meng-yao Zhang, 2021. "Modeling of Ultra-Short Term Offshore Wind Power Prediction Based on Condition-Assessment of Wind Turbines," Energies, MDPI, vol. 14(4), pages 1-16, February.
    13. Hyun-Goo Kim & Jin-Young Kim, 2021. "Analysis of Wind Turbine Aging through Operation Data Calibrated by LiDAR Measurement," Energies, MDPI, vol. 14(8), pages 1-12, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Davide Astolfi & Raymond Byrne & Francesco Castellani, 2020. "Analysis of Wind Turbine Aging through Operation Curves," Energies, MDPI, vol. 13(21), pages 1-21, October.
    2. Sun, Peng & Li, Jian & Wang, Caisheng & Lei, Xiao, 2016. "A generalized model for wind turbine anomaly identification based on SCADA data," Applied Energy, Elsevier, vol. 168(C), pages 550-567.
    3. Stetco, Adrian & Dinmohammadi, Fateme & Zhao, Xingyu & Robu, Valentin & Flynn, David & Barnes, Mike & Keane, John & Nenadic, Goran, 2019. "Machine learning methods for wind turbine condition monitoring: A review," Renewable Energy, Elsevier, vol. 133(C), pages 620-635.
    4. Davide Astolfi & Raymond Byrne & Francesco Castellani, 2021. "Estimation of the Performance Aging of the Vestas V52 Wind Turbine through Comparative Test Case Analysis," Energies, MDPI, vol. 14(4), pages 1-25, February.
    5. Xu, Qifa & Fan, Zhenhua & Jia, Weiyin & Jiang, Cuixia, 2020. "Fault detection of wind turbines via multivariate process monitoring based on vine copulas," Renewable Energy, Elsevier, vol. 161(C), pages 939-955.
    6. Xin Wu & Hong Wang & Guoqian Jiang & Ping Xie & Xiaoli Li, 2019. "Monitoring Wind Turbine Gearbox with Echo State Network Modeling and Dynamic Threshold Using SCADA Vibration Data," Energies, MDPI, vol. 12(6), pages 1-19, March.
    7. Ana Rita Nunes & Hugo Morais & Alberto Sardinha, 2021. "Use of Learning Mechanisms to Improve the Condition Monitoring of Wind Turbine Generators: A Review," Energies, MDPI, vol. 14(21), pages 1-22, November.
    8. Davide Astolfi & Francesco Castellani & Matteo Becchetti & Andrea Lombardi & Ludovico Terzi, 2020. "Wind Turbine Systematic Yaw Error: Operation Data Analysis Techniques for Detecting It and Assessing Its Performance Impact," Energies, MDPI, vol. 13(9), pages 1-17, May.
    9. Kevin Leahy & Colm Gallagher & Peter O’Donovan & Dominic T. J. O’Sullivan, 2019. "Issues with Data Quality for Wind Turbine Condition Monitoring and Reliability Analyses," Energies, MDPI, vol. 12(2), pages 1-22, January.
    10. Mérigaud, Alexis & Ringwood, John V., 2016. "Condition-based maintenance methods for marine renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 53-78.
    11. Ruiz de la Hermosa González-Carrato, Raúl, 2018. "Wind farm monitoring using Mahalanobis distance and fuzzy clustering," Renewable Energy, Elsevier, vol. 123(C), pages 526-540.
    12. Wang, Anqi & Pei, Yan & Qian, Zheng & Zareipour, Hamidreza & Jing, Bo & An, Jiayi, 2022. "A two-stage anomaly decomposition scheme based on multi-variable correlation extraction for wind turbine fault detection and identification," Applied Energy, Elsevier, vol. 321(C).
    13. Miguel A. Rodríguez-López & Luis M. López-González & Luis M. López-Ochoa & Jesús Las-Heras-Casas, 2018. "Methodology for Detecting Malfunctions and Evaluating the Maintenance Effectiveness in Wind Turbine Generator Bearings Using Generic versus Specific Models from SCADA Data," Energies, MDPI, vol. 11(4), pages 1-22, March.
    14. Peng Sun & Jian Li & Junsheng Chen & Xiao Lei, 2016. "A Short-Term Outage Model of Wind Turbines with Doubly Fed Induction Generators Based on Supervisory Control and Data Acquisition Data," Energies, MDPI, vol. 9(11), pages 1-21, October.
    15. Mehrjoo, Mehrdad & Jafari Jozani, Mohammad & Pawlak, Miroslaw, 2021. "Toward hybrid approaches for wind turbine power curve modeling with balanced loss functions and local weighting schemes," Energy, Elsevier, vol. 218(C).
    16. Jijian Lian & Ou Cai & Xiaofeng Dong & Qi Jiang & Yue Zhao, 2019. "Health Monitoring and Safety Evaluation of the Offshore Wind Turbine Structure: A Review and Discussion of Future Development," Sustainability, MDPI, vol. 11(2), pages 1-29, January.
    17. Jing, Bo & Qian, Zheng & Pei, Yan & Zhang, Lizhong & Yang, Tingyi, 2020. "Improving wind turbine efficiency through detection and calibration of yaw misalignment," Renewable Energy, Elsevier, vol. 160(C), pages 1217-1227.
    18. Zhicheng Lin & Song Zheng & Zhicheng Chen & Rong Zheng & Wang Zhang, 2019. "Application Research of the Parallel System Theory and the Data Engine Approach in Wind Energy Conversion System," Energies, MDPI, vol. 12(5), pages 1-20, March.
    19. Kevin Leahy & Colm Gallagher & Peter O’Donovan & Ken Bruton & Dominic T. J. O’Sullivan, 2018. "A Robust Prescriptive Framework and Performance Metric for Diagnosing and Predicting Wind Turbine Faults Based on SCADA and Alarms Data with Case Study," Energies, MDPI, vol. 11(7), pages 1-21, July.
    20. Dao, Phong B., 2022. "On Wilcoxon rank sum test for condition monitoring and fault detection of wind turbines," Applied Energy, Elsevier, vol. 318(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:2086-:d:348571. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.