IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i19p7374-d935876.html
   My bibliography  Save this article

Fostering Energy Resilience in the Rural Thai Power System—A Case Study in Nakhon Phanom

Author

Listed:
  • Maria Christina Gudrun Hart

    (Institute for Information Systems, Leibniz University Hanover, Koenigsworther Platz 1, 30167 Hanover, Germany)

  • Michael Hans Breitner

    (Institute for Information Systems, Leibniz University Hanover, Koenigsworther Platz 1, 30167 Hanover, Germany)

Abstract

With rising electricity demand, heavy reliance on imports, and recent economic downturns due to the negative impact of the COVID-19 pandemic, supply chain bottlenecks, and the Russian invasion of Ukraine, Thailand is suffering severely from energy resilience risks. The government has therefore set a goal of decentralizing energy production through small-scale distributed renewable energy systems. To support their design and the planning process, we simulate multiple scenarios with wind turbines, photovoltaic systems, and battery storage for a model community in rural Nakhon Phanom, Thailand. Using the software NESSI4D, we evaluate and discuss their impact on energy resilience by considering environmental sustainability, economic attractiveness, and independence from the central power grid. To fill the gap of missing data on energy demand, we synthesize high-resolution load profiles from the Thailand Vietnam Socio-Economic Panel. We conclude that distributed photovoltaic systems with additional battery storage are only suitable to promote energy resilience if the government provides appropriate financial incentives. Considering temporal variations and local conditions, as well as a participatory decision-making process, are crucial for the long-term success of energy projects. Our advice to decision-makers is to design policies and regulatory support that are aligned with the preferences and needs of target communities.

Suggested Citation

  • Maria Christina Gudrun Hart & Michael Hans Breitner, 2022. "Fostering Energy Resilience in the Rural Thai Power System—A Case Study in Nakhon Phanom," Energies, MDPI, vol. 15(19), pages 1-20, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7374-:d:935876
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/19/7374/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/19/7374/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Warut Pannakkong & Thanyaporn Harncharnchai & Jirachai Buddhakulsomsiri, 2022. "Forecasting Daily Electricity Consumption in Thailand Using Regression, Artificial Neural Network, Support Vector Machine, and Hybrid Models," Energies, MDPI, vol. 15(9), pages 1-21, April.
    2. Smith, Cameron & Burrows, John & Scheier, Eric & Young, Amberli & Smith, Jessica & Young, Tiffany & Gheewala, Shabbir H., 2015. "Comparative Life Cycle Assessment of a Thai Island's diesel/PV/wind hybrid microgrid," Renewable Energy, Elsevier, vol. 80(C), pages 85-100.
    3. Lombardi, Francesco & Balderrama, Sergio & Quoilin, Sylvain & Colombo, Emanuela, 2019. "Generating high-resolution multi-energy load profiles for remote areas with an open-source stochastic model," Energy, Elsevier, vol. 177(C), pages 433-444.
    4. Bernd Hardeweg & Stephan Klasen & Hermann Waibel, 2013. "Establishing a Database for Vulnerability Assessment," Palgrave Macmillan Books, in: Stephan Klasen & Hermann Waibel (ed.), Vulnerability to Poverty, chapter 3, pages 50-79, Palgrave Macmillan.
    5. Aya Yoshida & Panate Manomivibool & Tomohiro Tasaki & Pattayaporn Unroj, 2020. "Qualitative Study on Electricity Consumption of Urban and Rural Households in Chiang Rai, Thailand, with a Focus on Ownership and Use of Air Conditioners," Sustainability, MDPI, vol. 12(14), pages 1-19, July.
    6. Raymond Byrne & Davide Astolfi & Francesco Castellani & Neil J. Hewitt, 2020. "A Study of Wind Turbine Performance Decline with Age through Operation Data Analysis," Energies, MDPI, vol. 13(8), pages 1-18, April.
    7. Massetti, Emanuele & Tavoni, Massimo, 2012. "A developing Asia emission trading scheme (Asia ETS)," Energy Economics, Elsevier, vol. 34(S3), pages 436-443.
    8. Apichonnabutr, W. & Tiwary, A., 2018. "Trade-offs between economic and environmental performance of an autonomous hybrid energy system using micro hydro," Applied Energy, Elsevier, vol. 226(C), pages 891-904.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giacomo Falchetta & Nicolò Stevanato & Magda Moner-Girona & Davide Mazzoni & Emanuela Colombo & Manfred Hafner, 2020. "M-LED: Multi-sectoral Latent Electricity Demand Assessment for Energy Access Planning," Working Papers 2020.09, Fondazione Eni Enrico Mattei.
    2. Wagener, Andreas & Zenker, Juliane, 2018. "Decoupled but not neutral: The effects of stochastic transfers on investment and incomes in rural Thailand," TVSEP Working Papers wp-008, Leibniz Universitaet Hannover, Institute for Environmental Economics and World Trade, Project TVSEP.
    3. Zhao, Bo & Chen, Jian & Zhang, Leiqi & Zhang, Xuesong & Qin, Ruwen & Lin, Xiangning, 2018. "Three representative island microgrids in the East China Sea: Key technologies and experiences," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 262-274.
    4. Francesco Bosello & Carlo Orecchia & David A. Raitzer, 2016. "Decarbonization Pathways in Southeast Asia: New Results for Indonesia, Malaysia, Philippines, Thailand and Viet Nam," Working Papers 2016.75, Fondazione Eni Enrico Mattei.
    5. Bierkamp, Sina & Nguyen, Trung Thanh & Grote, Ulrike, 2021. "Environmental income and remittances: Evidence from rural central highlands of Vietnam," Ecological Economics, Elsevier, vol. 179(C).
    6. Thomas Sachs & Anna Gründler & Milos Rusic & Gilbert Fridgen, 2019. "Framing Microgrid Design from a Business and Information Systems Engineering Perspective," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 61(6), pages 729-744, December.
    7. Jiang, Jingjing & Xie, Dejun & Ye, Bin & Shen, Bo & Chen, Zhanming, 2016. "Research on China’s cap-and-trade carbon emission trading scheme: Overview and outlook," Applied Energy, Elsevier, vol. 178(C), pages 902-917.
    8. Do, Manh Hung & Nguyen, Trung Thanh, 2024. "Impact of crop commercialization on smallholder farmers’ resilience to shocks: Evidence from panel data for rural Southeast Asia," Food Policy, Elsevier, vol. 128(C).
    9. Mai, Nhat Chi, 2022. "Socioeconomic effects of collectivist and individualist education: A comparison between North and South Vietnam," OSF Preprints n9pyw, Center for Open Science.
    10. Gavard, Claire & Winchester, Niven & Paltsev, Sergey, 2016. "Limited trading of emissions permits as a climate cooperation mechanism? US–China and EU–China examples," Energy Economics, Elsevier, vol. 58(C), pages 95-104.
    11. Pahlisch, Thi Hoa & Parvathi, Priyanka & Waibel, Hermann, 2017. "Comparing peri-urban versus rural poverty and child malnutrition reduction: Insights from Southeast Asia," TVSEP Working Papers wp-005, Leibniz Universitaet Hannover, Institute for Environmental Economics and World Trade, Project TVSEP.
    12. Hugo Radet & Bruno Sareni & Xavier Roboam, 2023. "Synthesis of Solar Production and Energy Demand Profiles Using Markov Chains for Microgrid Design," Energies, MDPI, vol. 16(23), pages 1-12, December.
    13. Manh Hung Do, 2023. "Saving up and diversifying income for a rainy day: Implications for households' resilience strategies and poverty," TVSEP Working Papers wp-033, Leibniz Universitaet Hannover, Institute for Environmental Economics and World Trade, Project TVSEP.
    14. William Clements & Surendra Pandit & Prashanna Bajracharya & Joe Butchers & Sam Williamson & Biraj Gautam & Paul Harper, 2021. "Techno-Economic Modelling of Micro-Hydropower Mini-Grids in Nepal to Improve Financial Sustainability and Enable Electric Cooking," Energies, MDPI, vol. 14(14), pages 1-23, July.
    15. Phan, Chung & Filomeni, Stefano & Kok, Seng Kiong, 2024. "The impact of technology on access to credit: A review of loan approval and terms in rural Vietnam and Thailand," Research in International Business and Finance, Elsevier, vol. 72(PA).
    16. Jie Wu & Ying Fan & Yan Xia, 2017. "How Can China Achieve Its Nationally Determined Contribution Targets Combining Emissions Trading Scheme and Renewable Energy Policies?," Energies, MDPI, vol. 10(8), pages 1-20, August.
    17. Ihsan, Abbas & Jeppesen, Matthew & Brear, Michael J., 2019. "Impact of demand response on the optimal, techno-economic performance of a hybrid, renewable energy power plant," Applied Energy, Elsevier, vol. 238(C), pages 972-984.
    18. Li, Mengyu & Weng, Yuyan & Duan, Maosheng, 2019. "Emissions, energy and economic impacts of linking China’s national ETS with the EU ETS," Applied Energy, Elsevier, vol. 235(C), pages 1235-1244.
    19. Nguyen, Trung Thanh & Nguyen, Loc Duc & Lippe, Rattiya Suddeephong & Grote, Ulrike, 2017. "Determinants of Farmers’ Land Use Decision-Making: Comparative Evidence From Thailand and Vietnam," World Development, Elsevier, vol. 89(C), pages 199-213.
    20. Pham, Huong Dien & Waibel, Hermann, 2018. "Risk attitudes, knowledge, skills and agricultural productivity," TVSEP Working Papers wp-007, Leibniz Universitaet Hannover, Institute for Environmental Economics and World Trade, Project TVSEP.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7374-:d:935876. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.