IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v80y2015icp85-100.html
   My bibliography  Save this article

Comparative Life Cycle Assessment of a Thai Island's diesel/PV/wind hybrid microgrid

Author

Listed:
  • Smith, Cameron
  • Burrows, John
  • Scheier, Eric
  • Young, Amberli
  • Smith, Jessica
  • Young, Tiffany
  • Gheewala, Shabbir H.

Abstract

Hybrid microgrid systems are an emerging tool for rural electrification due in part to their purported environmental benefits. This study uses Life Cycle Assessment (LCA) to compare the environmental impacts of a diesel/PV/wind hybrid microgrid on the island of Koh Jig, Thailand with the electrification alternatives of grid extension and home diesel generators. The impact categories evaluated are: acidification potential (kg SO2 eq), global warming potential (kg CO2 eq), human toxicity potential (kg 1.4 DCB eq), and abiotic resource depletion potential (kg Sb eq). The results show that the microgrid system has the lowest global warming and abiotic resource depletion potentials of all three electrification scenarios. The use phase of the diesel generator and the extraction of copper are shown to significantly contribute to the microgrid's environmental impacts. The relative environmental impacts of the grid extension scenario are found to be proportional to the distance required for grid extension. Across all categories except acidification potential, the impacts from the home diesel generators are the largest. Sensitivity analyses show that maximizing the renewable energy fraction does not necessarily produce a more environmentally sustainable electrification scenario and that the diesel generator provides versatility to the system by allowing power production to be scaled significantly before more technology is needed to meet demand. While the environmental benefits of the microgrid increase as the installation community becomes more isolated, the choice of electrification scenario requires assigning relative importance to each impact category and considering social and economic factors.

Suggested Citation

  • Smith, Cameron & Burrows, John & Scheier, Eric & Young, Amberli & Smith, Jessica & Young, Tiffany & Gheewala, Shabbir H., 2015. "Comparative Life Cycle Assessment of a Thai Island's diesel/PV/wind hybrid microgrid," Renewable Energy, Elsevier, vol. 80(C), pages 85-100.
  • Handle: RePEc:eee:renene:v:80:y:2015:i:c:p:85-100
    DOI: 10.1016/j.renene.2015.01.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115000105
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.01.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Phuangpornpitak, N. & Kumar, S., 2011. "User acceptance of diesel/PV hybrid system in an island community," Renewable Energy, Elsevier, vol. 36(1), pages 125-131.
    2. Chaurey, Akanksha & Kandpal, Tara Chandra, 2010. "Assessment and evaluation of PV based decentralized rural electrification: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2266-2278, October.
    3. del Río, Pablo & Burguillo, Mercedes, 2009. "An empirical analysis of the impact of renewable energy deployment on local sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1314-1325, August.
    4. Green, Donna, 2004. "Thailand's solar white elephants: an analysis of 15 yr of solar battery charging programmes in northern Thailand," Energy Policy, Elsevier, vol. 32(6), pages 747-760, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haider Al-Rubaye & Joseph D. Smith & Mohammed H. S. Zangana & Prashant Nagapurkar & Yishu Zhou & Greg Gelles, 2022. "Advances in Energy Hybridization for Resilient Supply: A Sustainable Approach to the Growing World Demand," Energies, MDPI, vol. 15(16), pages 1-13, August.
    2. Elizabeth Baldwin & Jennifer N. Brass & Sanya Carley & Lauren M. MacLean, 2015. "Electrification and rural development: issues of scale in distributed generation," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 4(2), pages 196-211, March.
    3. Andreea Ileana Zamfir, 2011. "Management Of Renewable Energy And Regional Development: European Experiences And Steps Forward," Theoretical and Empirical Researches in Urban Management, Research Centre in Public Administration and Public Services, Bucharest, Romania, vol. 6(3), pages 35-42, August.
    4. Niranjan Rao Deevela & Bhim Singh & Tara C. Kandpal, 2021. "Techno-economics of solar PV array-based hybrid systems for powering telecom towers," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 17003-17029, November.
    5. Giulio Allesina & Simone Pedrazzi, 2021. "Barriers to Success: A Technical Review on the Limits and Possible Future Roles of Small Scale Gasifiers," Energies, MDPI, vol. 14(20), pages 1-23, October.
    6. Mostafa Shaaban & Jürgen Scheffran & Jürgen Böhner & Mohamed S. Elsobki, 2018. "Sustainability Assessment of Electricity Generation Technologies in Egypt Using Multi-Criteria Decision Analysis," Energies, MDPI, vol. 11(5), pages 1-25, May.
    7. Díaz, P. & Peña, R. & Muñoz, J. & Arias, C.A. & Sandoval, D., 2011. "Field analysis of solar PV-based collective systems for rural electrification," Energy, Elsevier, vol. 36(5), pages 2509-2516.
    8. Lahimer, A.A. & Alghoul, M.A. & Yousif, Fadhil & Razykov, T.M. & Amin, N. & Sopian, K., 2013. "Research and development aspects on decentralized electrification options for rural household," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 314-324.
    9. Joshi, Lalita & Choudhary, Deepak & Kumar, Praveen & Venkateswaran, Jayendran & Solanki, Chetan S., 2019. "Does involvement of local community ensure sustained energy access? A critical review of a solar PV technology intervention in rural India," World Development, Elsevier, vol. 122(C), pages 272-281.
    10. Hirmer, Stephanie & Cruickshank, Heather, 2014. "Making the deployment of pico-PV more sustainable along the value chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 401-411.
    11. Copena, Damián & Simón, Xavier, 2018. "Wind farms and payments to landowners: Opportunities for rural development for the case of Galicia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 38-47.
    12. Ramachandra, T.V. & Jain, Rishabh & Krishnadas, Gautham, 2011. "Hotspots of solar potential in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3178-3186, August.
    13. Manel Kamoun & Ines Abdelkafi & Abdelfetah Ghorbel, 2019. "The Impact of Renewable Energy on Sustainable Growth: Evidence from a Panel of OECD Countries," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 10(1), pages 221-237, March.
    14. Nicholas Mercer & Amy Hudson & Debbie Martin & Paul Parker, 2020. "“That’s Our Traditional Way as Indigenous Peoples”: Towards a Conceptual Framework for Understanding Community Support of Sustainable Energies in NunatuKavut, Labrador," Sustainability, MDPI, vol. 12(15), pages 1-32, July.
    15. Suberu, Mohammed Yekini & Mustafa, Mohd Wazir & Bashir, Nouruddeen & Muhamad, Nor Asiah & Mokhtar, Ahmad Safawi, 2013. "Power sector renewable energy integration for expanding access to electricity in sub-Saharan Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 630-642.
    16. Aghamolaei, Reihaneh & Shamsi, Mohammad Haris & O’Donnell, James, 2020. "Feasibility analysis of community-based PV systems for residential districts: A comparison of on-site centralized and distributed PV installations," Renewable Energy, Elsevier, vol. 157(C), pages 793-808.
    17. Fanelli Rosa Maria, 2018. "Rural Small and Medium Enterprises Development in Molise (Italy)," European Countryside, Sciendo, vol. 10(4), pages 566-589, December.
    18. Molina-Ruiz, José & Martínez-Sánchez, María José & Pérez-Sirvent, Carmen & Tudela-Serrano, Mari Luz & García Lorenzo, Mari Luz, 2011. "Developing and applying a GIS-assisted approach to evaluate visual impact in wind farms," Renewable Energy, Elsevier, vol. 36(3), pages 1125-1132.
    19. Djanibekov, Utkur & Gaur, Varun, 2018. "Nexus of energy use, agricultural production, employment and incomes among rural households in Uttar Pradesh, India," Energy Policy, Elsevier, vol. 113(C), pages 439-453.
    20. López-González, A. & Ferrer-Martí, L. & Domenech, B., 2019. "Sustainable rural electrification planning in developing countries: A proposal for electrification of isolated communities of Venezuela," Energy Policy, Elsevier, vol. 129(C), pages 327-338.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:80:y:2015:i:c:p:85-100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.