IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v23y2021i11d10.1007_s10668-021-01379-z.html
   My bibliography  Save this article

Techno-economics of solar PV array-based hybrid systems for powering telecom towers

Author

Listed:
  • Niranjan Rao Deevela

    (Indian Institute of Technology Delhi)

  • Bhim Singh

    (Indian Institute of Technology Delhi)

  • Tara C. Kandpal

    (Indian Institute of Technology Delhi)

Abstract

An attempt has been made to evaluate the financial feasibility of hybrid power supply option during real-time grid power unavailability (continuous and intermittent) conditions and determine the optimal hybrid power supply configurations for outdoor telecom towers in India. As grid power availability is highly dependent on locations, a review of real-time hourly grid power supply availability for telecom towers at 36 locations in different parts of India has also been presented. Ten different locations across different climatic zones were analyzed, and it was found that duration and continuity (continuous and intermittent) of power outages considerably affect the LCOE of different configurations. So it is imperative that these factors be taken into account when determining the optimal hybrid power system. Solar PV-based hybrid power supply systems were found to have lower LCOE for all power outage conditions both in continuous as well as intermittent with their values in the range of Indian rupees (INR) 6.76–INR 26.32 (US $0.095–US $0.371) per kWh for the optimal cases (1 US$ = INR 76.28 (As on April 27, 2020)). While solar PV with battery is found to be the least cost hybrid power supply options for the telecom towers located in areas with continuous grid power unavailability up to 4 h, a diesel generator also needs to be included for larger hours of continuous grid unavailability.

Suggested Citation

  • Niranjan Rao Deevela & Bhim Singh & Tara C. Kandpal, 2021. "Techno-economics of solar PV array-based hybrid systems for powering telecom towers," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 17003-17029, November.
  • Handle: RePEc:spr:endesu:v:23:y:2021:i:11:d:10.1007_s10668-021-01379-z
    DOI: 10.1007/s10668-021-01379-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-021-01379-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-021-01379-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nouni, M.R. & Mullick, S.C. & Kandpal, T.C., 2008. "Providing electricity access to remote areas in India: An approach towards identifying potential areas for decentralized electricity supply," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1187-1220, June.
    2. Satya Prakash Makhija & S. P. Dubey, 2018. "Feasibility of PV–biodiesel hybrid energy system for a cement technology institute in India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(1), pages 377-387, February.
    3. Chaurey, Akanksha & Kandpal, Tara Chandra, 2010. "Assessment and evaluation of PV based decentralized rural electrification: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2266-2278, October.
    4. Kusakana, Kanzumba & Vermaak, Herman Jacobus, 2013. "Hybrid renewable power systems for mobile telephony base stations in developing countries," Renewable Energy, Elsevier, vol. 51(C), pages 419-425.
    5. R. Sridhar & V. Sachithanandam & T. Mageswaran & Manik Mahapatra & K. O. Badarees & R. Purvaja & R. Ramesh, 2020. "Small island management: a case study of the Smith Island, North Andaman, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(8), pages 8211-8228, December.
    6. Nouni, M.R. & Mullick, S.C. & Kandpal, T.C., 2009. "Providing electricity access to remote areas in India: Niche areas for decentralized electricity supply," Renewable Energy, Elsevier, vol. 34(2), pages 430-434.
    7. Nema, Pragya & Nema, R.K. & Rangnekar, Saroj, 2010. "Minimization of green house gases emission by using hybrid energy system for telephony base station site application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(6), pages 1635-1639, August.
    8. Arshdeep Singh & Shimi Sudha Letha, 2019. "Emerging energy sources for electric vehicle charging station," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(5), pages 2043-2082, October.
    9. Satya Prakash Makhija & S. P. Dubey, 2019. "Feasibility analysis of biomass-based grid-integrated and stand-alone hybrid energy systems for a cement plant in India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(2), pages 861-878, April.
    10. Hussein A. Kazem & Hamood A. S. Al-Badi & Ahmed S. Al Busaidi & Miqdam T. Chaichan, 2017. "Optimum design and evaluation of hybrid solar/wind/diesel power system for Masirah Island," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(5), pages 1761-1778, October.
    11. Khan, Mohammad Junaid & Yadav, Amit Kumar & Mathew, Lini, 2017. "Techno economic feasibility analysis of different combinations of PV-Wind-Diesel-Battery hybrid system for telecommunication applications in different cities of Punjab, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 577-607.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mandelli, Stefano & Barbieri, Jacopo & Mereu, Riccardo & Colombo, Emanuela, 2016. "Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1621-1646.
    2. Mohammed H. Alsharif & Jeong Kim, 2016. "Hybrid Off-Grid SPV/WTG Power System for Remote Cellular Base Stations Towards Green and Sustainable Cellular Networks in South Korea," Energies, MDPI, vol. 10(1), pages 1-23, December.
    3. Lahimer, A.A. & Alghoul, M.A. & Yousif, Fadhil & Razykov, T.M. & Amin, N. & Sopian, K., 2013. "Research and development aspects on decentralized electrification options for rural household," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 314-324.
    4. Li, Chong & Zhou, Dequn & Wang, Hui & Lu, Yuzheng & Li, Dongdong, 2020. "Techno-economic performance study of stand-alone wind/diesel/battery hybrid system with different battery technologies in the cold region of China," Energy, Elsevier, vol. 192(C).
    5. Nema, Pragya & Nema, Sameer & Roy, Priyanka, 2012. "An overview of global climate changing in current scenario and mitigation action," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2329-2336.
    6. Andrea Vaona & Natalia Magnani, 2014. "Access to electricity and socio-economic characteristics: panel data evidence from 31 countries," Working Papers 15/2014, University of Verona, Department of Economics.
    7. Chaurey, Akanksha & Kandpal, Tara Chandra, 2010. "Assessment and evaluation of PV based decentralized rural electrification: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2266-2278, October.
    8. Mohammed H. Alsharif & Jeong Kim, 2016. "Optimal Solar Power System for Remote Telecommunication Base Stations: A Case Study Based on the Characteristics of South Korea’s Solar Radiation Exposure," Sustainability, MDPI, vol. 8(9), pages 1-21, September.
    9. Narula, Kapil & Nagai, Yu & Pachauri, Shonali, 2012. "The role of Decentralized Distributed Generation in achieving universal rural electrification in South Asia by 2030," Energy Policy, Elsevier, vol. 47(C), pages 345-357.
    10. Datta, Amitava & Ganguly, Ranjan & Sarkar, Luna, 2010. "Energy and exergy analyses of an externally fired gas turbine (EFGT) cycle integrated with biomass gasifier for distributed power generation," Energy, Elsevier, vol. 35(1), pages 341-350.
    11. Zeljković, Čedomir & Mršić, Predrag & Erceg, Bojan & Lekić, Đorđe & Kitić, Nemanja & Matić, Petar, 2022. "Optimal sizing of photovoltaic-wind-diesel-battery power supply for mobile telephony base stations," Energy, Elsevier, vol. 242(C).
    12. Mohammed, Y.S. & Mokhtar, A.S. & Bashir, N. & Saidur, R., 2013. "An overview of agricultural biomass for decentralized rural energy in Ghana," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 15-25.
    13. Pillot, Benjamin & Muselli, Marc & Poggi, Philippe & Dias, João Batista, 2019. "Historical trends in global energy policy and renewable power system issues in Sub-Saharan Africa: The case of solar PV," Energy Policy, Elsevier, vol. 127(C), pages 113-124.
    14. Nixon, J.D. & Dey, P.K. & Davies, P.A., 2012. "The feasibility of hybrid solar-biomass power plants in India," Energy, Elsevier, vol. 46(1), pages 541-554.
    15. Mohammad Shafiey Dehaj & Hassan Hajabdollahi, 2021. "Multi-objective optimization of hybrid solar/wind/diesel/battery system for different climates of Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(7), pages 10910-10936, July.
    16. Khan, Mohammad Junaid & Yadav, Amit Kumar & Mathew, Lini, 2017. "Techno economic feasibility analysis of different combinations of PV-Wind-Diesel-Battery hybrid system for telecommunication applications in different cities of Punjab, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 577-607.
    17. Mohammed H. Alsharif & Jeong Kim & Jin Hong Kim, 2017. "Green and Sustainable Cellular Base Stations: An Overview and Future Research Directions," Energies, MDPI, vol. 10(5), pages 1-27, April.
    18. Jiaxin Yu & Jun Wang, 2020. "Optimization Design of a Rain-Power Utilization System Based on a Siphon and Its Application in a High-Rise Building," Energies, MDPI, vol. 13(18), pages 1-18, September.
    19. Díaz, P. & Peña, R. & Muñoz, J. & Arias, C.A. & Sandoval, D., 2011. "Field analysis of solar PV-based collective systems for rural electrification," Energy, Elsevier, vol. 36(5), pages 2509-2516.
    20. Alsharif, Mohammed H. & Nordin, Rosdiadee & Ismail, Mahamod, 2016. "Green wireless network optimisation strategies within smart grid environments for Long Term Evolution (LTE) cellular networks in Malaysia," Renewable Energy, Elsevier, vol. 85(C), pages 157-170.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:23:y:2021:i:11:d:10.1007_s10668-021-01379-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.